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Abstract—Depletion-safe and efficient operation of sensor net-
works powered by miniature solar harvesters demands precise
prediction of the future energy intake. Only recently, methods
that join local knowledge and global weather forecasts have
been shown to improve the prediction performance. However,
making use of global weather forecasts requires network-wide
dissemination with low energy and resource consumption. We
present and evaluate a system architecture that automatically
obtains global weather forecasts from freely available online
resources and disseminates them into the sensor network. We
implemented our system for sensor network hardware based
on TinyOS and Java. We conducted a system integration test
to verify the functionality of all components and evaluated
the performance of the dissemination algorithm with testbed
experiments. While we find that energy consumption is negligible
and resource usage is low, dissemination was reliable with a low
delay compared to the hourly interval of forecast updates.
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I. INTRODUCTION

Wireless sensor networks enable seamless and highly in-
tegrated observation and control in several scenarios. Due to
their miniature size and wireless communication, they have
been used for, e.g., wildlife [1], environmental [2], agricul-
tural [3], and structural [4] applications. They have also started
drawing the attention of industry, where sensor networks are
employed as cyber physical systems (CPS) [5] to monitor and
control production processes.

While the individual sensor nodes are constrained devices
with low power consumption, their energy budget is also
limited, since sensor nodes are usually battery-powered. To
overcome this limitation, a plethora of so-called energy-
harvesting sensor nodes [6, 7] have been developed. The
term energy harvesting implies in this context, that nodes are
powered from renewable energy sources, solar power being
most widely used. To bridge periods of low or no energy
harvest, rechargeable batteries or supercapacitors are used as
energy buffers, where the latter are particularly environmen-
tally friendly and allow a concise estimation of their residual
energy by means of their terminal voltage [8].

However, the amount of harvestable energy is restricted, as
solar panels must usually meet the tiny dimensions of sensor
nodes to maintain non-intrusiveness and low cost. Therefore,
sensor nodes still rely on, e.g., energy-efficient medium access
and routing protocols. To configure these protocols—usually
by defining their duty cycle—the harvest has to be well known.
Yet, the energy produced by a solar cell cannot be predicted

precisely before network deployment and operation. This is
due to local and global influences. The former encompass
positioning and environment effects that lead to a specific
harvest pattern of each individual node, caused by, e.g.,
shadows from buildings and plants. The latter is due to weather
conditions (e.g., snow and rain) and seasonal effects (e.g.,
height of the sun) that usually affect all nodes in a network.

As a result, algorithms to adapt a node’s consumption to
match the available energy harvest have been devised [9, 10].
These rely on another category of algorithms to predict the
future harvest. In the past years, most effort has been spent on
making use of locally available data for harvest prediction [11,
12]. In changing weather conditions, these approaches lead to
a poor performance and may even fail, leading to (temporary)
node depletion. Only recently, we have proposed a method
to incorporate weather forecasts to improve harvest prediction
quality [13]. However, dissemination of weather forecasts into
the network is a mandatory yet unmet prerequisite for adopting
our prediction algorithm in real-world networks. To the best
of our knowledge, there are no solutions to close this gap.

In this paper, we present a system solution to dissemi-
nate weather forecasts based on cloud cover into an energy-
harvesting sensor network, so that the nodes in the network
are enabled to produce more precise harvest forecasts, shrink
the chance of depletion, and increase the utility of harvestable
energy. Our approach exploits existing network traffic and
compresses the weather forecasts to reduce the amount of addi-
tional bandwidth utilization and energy expenditure. Moreover,
a base station application automatically obtains weather fore-
cast from a freely available online weather forecast service and
compresses the data. This data is subsequently disseminated
in the sensor network with low delay (compared to the update
intervals of weather forecasts) and decompressed on the sensor
nodes with low resource consumption.

II. BACKGROUND AND RELATED WORK

This section presents related research in context of this
paper. First, we briefly discuss the basics of sensor networks
and, second, motivate the need for online consumption adap-
tation of sensor nodes. Third, we sketch techniques for harvest
forecasting, and fourth, we discuss existing methods for data
dissemination in sensor networks.



A. Energy-Harvesting Sensor Networks

Wireless sensor networks consist of tiny sensor nodes that
are, in addition to the sensors, equipped with low-power and
resource-constrained computing and wireless communication
devices. Their typical field of application is that of data col-
lection, where all nodes in the network create sensor samples
at fixed intervals. All data is collected by a central node, the
sink, which forwards the data to a more powerful computing
device, frequently called base station.

Traditionally, sensor nodes have been powered with batter-
ies, limiting their lifetime to several months. In the last decade,
researchers started replacing the batteries with micro-sized
renewable energy sources, so-called energy harvesters [6, 7], to
achieve an unattended, uninterrupted, and virtually unlimited
operation. Here, solar cells have been frequently adopted,
as solar energy is available in most outdoor sensor network
deployments. To maintain the tiny dimensions of the sensor
nodes, the solar cells yet have to be relatively small, hence
leading to an average energy intake smaller than the consump-
tion of a fully operational node.

Therefore, interrupted and unlimited operation requires low-
power protocols to reduce the consumption of a node. Since
the radio contributes highly to a node’s consumption, low-
power MAC and data collection protocols have been devised
in the past [14, 15, 16, 17]. Their common principle of
operation is to duty-cycle a node’s radio. To reduce protocol
complexity, duty cycles are asynchronous. While nodes wake
up periodically to check for incoming packets, this implies that
a node willing to transmit a packet has to wait until a receiver
wakes up. The corresponding rendezvous is achieved by two
different concepts. Low-power-listening (LPL) protocols let
the sender of a data packet either send a long preamble or
repeat the data packet until a receiving node wakes up, receives
the packet, and sends an acknowledgment. Low-power-probing
(LPP) protocols let the sender of a data packet wait until it
receives a beacon from a node that wakes up, where each
node is required to send such a beacon when it wakes up
periodically. Based on LPP, Unterschütz et al. have presented
a routing protocol in [17] that does not require link quality
estimation and routing tables.

B. Online Consumption Adaptation

Energy harvesting generally enables perpetual node and
network operation. Solar energy is the predominant energy
source, since most sensor networks are deployed outdoors.
Unfortunately, solar energy has an unsteady nature, exhibits
a diurnal pattern, and is highly location-dependent. Therefore,
the amount and times of harvested energy may heavily vary
from one node in a network to another. It is hence impossible
to plan the amount of harvested energy for each node in the
network prior to deployment. As a consequence, the tolerable
consumption of a node is not known and the consumption-
deciding protocol parameters cannot be chosen.

To solve this problem, algorithms for online consumption
adaptation such as [10, 18, 19] have been proposed. These
algorithms aim at two contracting goals. On the one hand,

they try to reduce the risk of (temporary) node depletion in
order to avoid network disconnects and data gaps. On the other
hand, they try to maximize the utility of a sensor node in
terms of using as much harvestable energy as possible—e.g.,
faster MAC reaction times lead to a higher consumption while
reducing the latency. While it is possible to implement and run
such algorithms based on the residual node energy only, they
profit highly from predictions of the future harvest.

C. Harvest Prediction

Several researchers have proposed and investigated methods
for prediction algorithms that are light-weight enough to be
run on sensor nodes. While a few works exist that propose
model-based prediction algorithms [20, 21], the predominant
approach is to divide a day into time slots and collect historical
data for each time slot [18, 11, 12]. By evaluating this
historical data, predictions for the energy harvest in the next
time slot or in time slots of the next day are generated. Existing
algorithms are restricted to local information only, i.e., each
node tracks its own history of energy harvest and creates
predictions solely based on its own local knowledge.

While these algorithms are suitable to identify the local
harvest pattern of the nodes in a network in stable weather con-
ditions, the fail upon changing conditions, e.g., when cloudy
days follow a series of sunny days. In this particular instance,
nodes tend to continuously overestimate the energy intake and
may hence experience (temporary) depletion. In our previous
work in [13], we have shown that combining algorithms to
identify local harvest patterns can be effectively merged with
global cloud-cover forecasts to improve predictions and hence
enhance the performance of online consumption adaptation
algorithms. To make global weather forecasts available on
each node in a sensor network, these forecasts have yet to
be disseminated.

D. Data Dissemination

For the general purpose of data dissemination in sensor
networks, protocols such as Trickle [22] and CodeDrip [23]
have been developed. They aim at rapid dissemination (usually
within a few seconds) and thereby counteract the benefits
of low-power MAC protocols by an increased energy con-
sumption. However, cloud-cover forecasts have long forecast
horizons of several days and are updated infrequently, hourly
to be the lowest known update interval. A latency in the order
of a few minutes is hence acceptable.

An approach such as RoCoCo in [24], which enables low-
power command dissemination in sensor networks at the
cost of an increased delay, is hence appealing. However,
RoCoCo does not support the dissemination of generic data
and adds overhead for addressing, which is not required for
disseminating harvest forecasts relevant for all nodes in the
network. Moreover, RoCoCo does not offer means to track the
latency, or delay, of a harvest forecast between its creation and
reception by a node. In the absence of time synchronization,
which is the case in many sensor network deployments, this
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Fig. 1. System architecture: Data collection sensor network consisting of
energy-harvesting sensor nodes. The base station obtains cloud-cover forecasts
from online weather portals, compresses and forwards them to the sensor
network sink s. The data collection network paths (red dotted arrows) are
used to disseminate weather forecasts (solid blue arrows) in the network.

information is yet required to align the forecast with the locally
generated, time-slot pattern.

III. SYSTEM ARCHITECTURE

In this section, we present our system architecture to provide
all nodes of the energy-harvesting sensor network with up-
to-date weather forecasts in order to improve their harvest
predictions and enable a more reliable operation that uses the
available solar energy to an improved capacity.

The presented system architecture is illustrated in Fig. 1.
The sensor network on the left-hand side of the figure consists
of solar-powered nodes that adjust their consumption (e.g.,
their radio duty cycle or sensing rate) based on their current
energy level and the expected future energy harvest. The main
purpose of the network is to measure and collect sensor data
without measurement gaps due to (temporary) depletion.

All data is forwarded, possibly over multiple hops, to the
sink. The latter is connected to a more powerful computing
device, the base station. This base station periodically obtains
weather forecasts from an online weather portal. All necessary
information is extracted and compressed to reduce bandwidth
usage and energy overhead during dissemination in the net-
work. Next, the base station forwards the compressed forecasts
to the sink, from where the forecast is disseminated in the
multi-hop sensor network. For this purpose, the existing rout-
ing infrastructure—i.e., the paths used for data collection—is
exploited.

In the following, we discuss the overall idea in more
detail but at a high level perspective. We provide technical
and implementation details and an evaluation in subsequent
sections.

A. Weather Forecasts and Compression

The Internet offers a plethora of weather portals with freely
available weather forecasts. The latter contain information
such as cloud cover and hourly sunshine duration. Forecast
horizons are multiple days and the typical granularity is an
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Fig. 2. Two example cloud-cover forecasts with a resolution of one hour and
a horizon of three days.

hour. As indicated in our previous research in [13], there is
a high correlation between cloud-cover information and har-
vested solar energy. We hence developed a server application
that periodically reads the latest cloud-cover forecast from an
online weather portal1. Here, we rely on parsing the generated
HTML forecast output that is freely available. Unfortunately,
the APIs for direct data access are liable to pay costs.

Cloud cover is a metric that indicates the cloudiness of
the sky in eighth, leading to nine discrete values. A naive
encoding of these forecasts with an hourly resolution yields
a size of 12B per forecasted day. Considering that state-
of-the-art sensor network radio chips [25] offer a packet
size of up to 127B, it is hence possible to transmit multi-
day cloud-cover forecasts within a single packet into the
network. However, cloud-cover forecasts are only relevant for
daytime and slowly change over time, cf. Fig. 2, hence leaving
room for compression. Using a simple block-to-block code
with nighttime omission, compression savings of up to 60%,
equal to an average compressed forecast length of 10B for
three-day forecasts, are achievable [26]. The major benefit
of compression is the possibility to attach, or piggy-back,
these forecasts to already existing network packets. Doing
this avoids additional (consumption) overhead inherent to low-
power MAC protocols, cf. Sec. II-A. Besides, bandwidth usage
and energy consumption during dissemination are decreased
when the amount of transmitted data declines. The risk of
packet loss is decreased at the same time.

B. Network-Wide Forecast Dissemination

Following the compression of the forecasts, the latter must
be disseminated in the multi-hop network. Naturally, this
distribution should lead to as low communication overhead
as possible in order to limit the extra energy expenditure
and bandwidth utilization. To meet these ends, we propose
to leverage the already existing network traffic resulting from
data collection. While data packets travel from the nodes to-
wards the sink, acknowledgment packets travel in the opposite
direction and therefore match the required flow of forecast dis-
semination. We exploit this fact and aim at attaching, or piggy-
backing, the compressed forecasts to these acknowledgments
similar to RoCoCo, cf. Sec. II-D.

1for our prototype implementation, we used the forecasts available from
http://www2.wetterspiegel.de/
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Fig. 3. Combined data collection and forecast dissemination. While the data
packet from node c travels all the way to the sink (dotted red arrows), the
forecast only propagates one hop further into the network (solid blue arrow).
Numbers on the edges indicate the sequence of events, circled arrows mark
nodes already holding the latest forecast update before communication.

TABLE I
CODES FOR PARTIAL DELTA CODING

delta frequency (%) code code length

0 82.67... 0 1
1 8.49... 10 2
-1 8.31... 110 3

else 0.53... 111xxxx 7

The underlying idea is to propagate forecasts in the network
similar to Trickle [22] but without the need for extra packets
and timers. Technical details are provided in Sec. IV-B. These
advantages come at the cost of an increased delay, since for
each packet traveling along a path, the forecast can only
propagate one hop into the network. This fact is depicted in
Fig. 3, where node a has already received the updated forecast
from the sink (indicated by the circled arrows in the upper right
node corner), whereas nodes b and c hold an outdated forecast.
In the example, node c has generated a new data packet that
travels to the sink with two intermediate hops. Since node c

sends its packet to node b, before node b receives the updated
forecast from node a, node c can only receive the forecast
upon the following packet transmission. We present theoretical
delay limits in Sec. IV-C and evaluate real-world performance
in Sec. V.

IV. TECHNICAL REALIZATION

As discussed in Sec. III-B, we intend to send compressed
harvest forecasts piggy-backed on the acknowledgments of
collection data traffic. In this section, we explain the used
compression method and its implementation, before we pro-
vide details about the dissemination strategy. Finally, we derive
theoretical limits for the expected dissemination delay that we
will analyze in Sec. V.

A. Forecast Compression and Decompression

We have shown the theoretical advantage of Daytime Delta
Coding (DDC) in our preliminary work [26]. Before providing
implementation details, we briefly revisit the function of DDC.

DDC makes use of two properties of cloud-cover forecasts.
First, it considers differential changes between each two adja-
cent, hourly cloud-cover forecast values rather than absolute
numbers. The predominant case (> 82%) is that of no change
between two values. Changes of ±1 are the next most frequent
cases with less than 9% occurrence each. All other cases—
i.e., absolute changes of more than 1—have an accumulated
relative frequency of less than 1%. The average number of

1: procedure DECODEFORECAST(N , sunrise, sunset)
2: isDay ← sunrise > sunset;
3: for i← 0, . . . , N − 1 do
4: if i = sunrise then
5: isDay ← true;
6: sunrise ← sunrise + 24; { next sunrise in 24 hours }
7: else if i = sunset then
8: isDay ← false;
9: sunrise ← sunset + 24; { next sunset in 24 hours }

10: if isDay then
11: forecast[i] = decodeNextValue(); { daytime }
12: else
13: forecast[i] = DEFAULT_NIGHT_VALUE; { nighttime }

Fig. 4. Decoding algorithm for cloud-cover forecasts with a horizon of
N values (hours) and the first relative occurrence of sunrise and sunset in
hours [26].

bits for encoding a single forecast value can be efficiently
reduced using the Huffman code as shown in Table I. Note
that in case of absolute changes higher than one, the absolute
forecast value is encoded using 4 bit and a prefix. Due to the
choice of the codes, decoding of the individual forecast values
boils down to counting the number of one-bits before the next
zero-bit in the compressed forecast bit stream.

Second, DDC makes use of the fact that, over a period of
a complete year, approximately half of the forecast values are
obsolete, since they fall into nighttime when no solar energy
is available. Therefore, DDC omits all forecast values that fall
into nighttime but adds information about sunrise and sunset.
Here, sunrise and sunset times are the offset (in hours, rounded
to the previous or following full hour, respectively) of sunrise
and sunset from the time of forecast creation. Our practical
implementation requires 5-bit integers for both values, hence
leading to a static overhead of 10 bit. Figure 4 shows the
fundamental algorithm behind the decoding performed on the
sensor nodes.

At this point, we want to point out that compression is
only performed on the more powerful base station, whereas
only decompression is executed on the energy- and resource-
constrained sensor nodes. Depending on the frequency of
consumption adaptation, it may be useful to perform the
decompression only once upon receiving an updated forecast.
In this case, however, each node needs to store both the
compressed and decompressed forecast.

Our reference implementation of the decompression algo-
rithm for TinyOS occupies less than 600B of ROM and up
to 20B of RAM, of which 10B are only locally used in
functions. Runtime is linear in the size of the (cloud-cover)
forecast in bits. Storage space for the forecast is linear in the
number of forecast days and cloud-cover values, respectively.

B. Network-Wide Forecast Dissemination

Harvest forecasts are updated periodically and disseminated
into the network. To decide whether a forecast is newer than
another, we assign version numbers to all forecasts. These
version numbers are incremented by the base station when
it generates a new forecast. For practical implementation, we
use a ring counter to keep memory consumption and packet
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overhead low. In our current implementation, we use an 8-bit
counter. Since old forecasts become obsolete once an update is
received, each node is only required to store the latest forecast.
Local storage is hence limited to a few ten bytes.

The general concept of dissemination is as follows. When-
ever a child node transmits a data packet to a parent node—i.e.,
when forwarding data towards the sink—it attaches the version
number of its most recent cloud-cover forecast. Upon reception
of a data packet, the parent compares the attached forecast
version number with its local forecast. Only if the received
version number indicates that the child holds an outdated
forecast, the parent piggy-backs its forecast on the software
acknowledgment sent out to the child.

This concept is applicable to all routing protocols based on
either low-power-listening (LPL) or low-power-probing (LPP)
MAC protocols. Figure 5 shows the concrete packet flow for an
LPP-based collection protocol similar to ORiNoCo/RoCoCo.
For an LPL-based collection protocol, the first beacon is
replaced by several (identical) data packets from the child until
the parent answers with its first acknowledgment.

With the proposed dissemination strategy, harvest forecasts
travel slowly from the sink to the nodes. The actual delay
between forecast creation and reception by a node depends
on its distance to the sink, the sensing rate, and the network
density (cf. Sec. IV-C). It is expected to range from a few
seconds to several minutes. However, nodes need to know the
time of forecast creation for a proper alignment with their local
harvesting pattern (cf. Sec. II-C). To enable nodes to assess
dissemination delay without the need for time synchronization,
we attached a 16-bit field to the forecasts that indicates its age
w.r.t. the time of its creation. The age is measured in seconds
and can track a dissemination delay of several hours.

In short, the forecast age is tracked by summing up the
individual delays introduced by each intermediate hop from
the sink to a node. Technically, this works as follows. The
base station initializes the age with 0 and forwards the forecast
immediately to the sink, which records its local time upon
reception of the forecast. Whenever the sink piggy-backs the
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Fig. 6. Average send interval of nodes arranged in a line topology, where all
nodes create a new data packet with common interval T.

forecast on an acknowledgment, it reads its local time and
calculates the forecast age from the time difference since it
received the forecast. The latter is written to the age field
of the transmitted forecast. All nodes in the network proceed
analogously. In contrast to the sink, however, they also store
the age of a received forecast upon reception and add this value
to the locally recorded delay when they forward a forecast.

C. Theoretical Dissemination Delay

To put the numbers of our performance evaluation in
Sec. V into context and to enable estimating the dissemination
delay prior to deployment, we carried out a theoretical but
simplified analysis of the dissemination delay inferred by the
proposed dissemination strategy. In particular, we assume that
the waiting times caused by the underlying asynchronous,
duty-cycled MAC protocol are small compared to the average
send interval of the nodes and can hence be neglected. We
also assume that all nodes take samples in common but non-
synchronized intervals T and create a new data packet at the
same interval. Moreover, we ignore the influence of packet loss
and link fluctuation. We present and summarize our results in
the following.

An upper bound of the delay dn experienced by node n can
be derived from the one-hop delay of each node in the network.
Children of the sink hence receive an updated forecast with a
delay of at most T. For each hop in the network, dissemination
delay increases iteratively by T. If node n has a distance of
hn hops to the sink, its delay is bounded by

sup dn = hn · T . (1)

With typical sampling intervals of a few minutes and low
hop counts, achieving worst-case dissemination delays of only
a few minutes is possible. In consideration of the fact that
forecasts are updated at most once an hour, the proposed
dissemination strategy hence appears feasible.

Furthermore, the average dissemination delay is smaller
than indicated by Eq. (1), since intermediate nodes may
receive updates considerably faster. This results from their task
of forwarding packets from nodes in their subtree towards
the sink. Since the calculation of the average dissemination
delay heavily depends on the actual (subtree) topology, we
concentrate on the worst-case average that is achieved for the
leaf node of a line topology—here, the number of hops is
maximized for a constant number of nodes.

Given N nodes in a line topology, the average send inter-
val τn of node n with distance hn (in hops) to the sink is

τn =
T

hn
. (2)



Figure 6 shows an example with 4 nodes. The average delay
is hence calculated through the summation of the individual
delays. For a leaf node n in a N -node line topology with
distance hn = N to the sink, the average delay is given by

d∅n =

hn−1∑
i=1

1

i
· T (3)

For any node n with hn hops to the sink, Eq. (3) can be used
as an (upper bound) approximation for the expected average
dissemination delay.

V. EVALUATION

In the following, we present our evaluation of the presented
system. First, we analyze the performance of forecast dissem-
ination in the sensor network. Second, we explain how we
validated the functionality of the entire system.

A. Forecast Dissemination

1) Evaluation Setup: We evaluated the performance of our
dissemination approach using WiseBed (Lübeck site) [27].
This testbed is currently comprised of 48 TelosB nodes, of
which we used up to 15 nodes for our experiments. With a
larger number of nodes, we experienced consistency problems
with the produced log files. However, the used number of
nodes allowed us to produce general observations.

At this point, we concentrated on the dissemination aspect,
so that we deployed a modified version of the sink that
generates forecast updates of a constant, given size every
5min. Note that this is a fraction of the anticipated forecast
dissemination interval of 1 h in real deployments. We chose
this value in order to speed up the evaluation process and
gain more results. Since the nodes were able to receive all
forecast updates (in time), the results are also applicable to
longer update intervals.

Each experiment was run for at least 3 h, leading to 30
generated and disseminated forecasts. Unless otherwise noted,
we used the following parameter set for the ORiNoCo data
collection layer. Each node maintained a buffer queue of 30
(data collection) packets for the case of temporary connectivity
loss. Unless congestion occurred, collection data were sent
at the next transmission opportunity. On the data collecting
nodes, the sleep interval between beacons was set to 750ms
with a random variation of 10% to avoid node synchronization.
To achieve higher delivery, the sink has been configured to
send beacons every 125ms. After sending a beacon, nodes
waited 8ms for an incoming data packet before returning to
sleep. We used the standard path cost metric—i.e., the hop
count—for ORiNoCo and configured the duplicate detection
to maintain a packet history of 10 packets.

2) Influence of Network Size: We analyzed the influence of
network size and topology on dissemination. For this purpose,
we ran experiments with networks consisting of 5, 10, and 15
nodes (including the sink). Each node created a data packet
every 60 s, where the first packet was created with a random
offset of at most 60 s after node reboot in order to simulate the
behavior of an asynchronously started and operated network.

TABLE II
DISSEMINATION DELAY IN A 5-NODE NETWORK

node avg. hop count avg. send interval (s) avg. delay (s)

1 1.0 50.9 32.5
52 1.2 32.9 20.6
56 1.2 33.0 30.4
62 2.2 50.4 72.0

TABLE III
DISSEMINATION PERFORMANCE FOR DIFFERENT NETWORK SIZES

nodes avg. hop count avg. delay (s) avg. delay error (s)

5 1.1 31.1 0.03
10 2.6 28.6 0.02
15 2.9 25.5 0.04

First, we studied dissemination success and overhead. In
all experiments, all 30 forecast updates were successfully
received by each node. The effort for this is measured by
the ratio of sent and received forecast updates. It ranges from
1.025 (an overhead of 2.5%) in the 5-node network to 1.12
(an overhead of 12%) in the 15-node network. This is an
acceptable performance in terms of packet loss and leads to
almost unnoticeable energy overhead, since the frequency of
piggy-backing forecasts on beacons is extremely low (less than
1% in all experiments).

Next, we analyzed dissemination delay and its influencing
factors. In the small 5-node network (cf. Table II), three nodes
delivered their data packets in most cases directly to the sink—
i.e., they are one-hop neighbors of the sink most of the time.
However, their average dissemination delay differs, confirming
that it is difficult to estimate dissemination delay based on
a single characteristic such as hop count. At the same time,
the figures support the upper bounds of 60 s, 90 s, and 105 s
derived from Eq. (3) in Sec. IV-C.

A comparison of the average delay in the three different
networks, displayed in Table III, reveals that despite the
tendency of larger networks to grow deeper, the average delay
is only affected slightly. A deeper analysis shows that the
larger networks have few leaf nodes and that the inner nodes
serve as routing parents more frequently. As a result, they send
data packets more frequently.

Finally, we analyzed the accuracy of the delay tracking
mechanism explained in Sec. IV-B. Throughout all experi-
ments, the average error is roughly −19ms. In all but two
cases, the errors range between −1.21 s and 1.04 s. In the two
exceptional cases, errors where as large as −64 s. Unfortu-
nately, we could not identify the source of this large deviation
but suspect that data corruption during the logging process has
occurred. We (still) noted this behavior in rare events.

Figure 7 displays the cumulative distribution functions
(CDFs) of the delay errors for the three network sizes. All
curves are similar, indicating that delay errors are almost
equally distributed. However, the CDF becomes slightly more
shallow for networks with more nodes, which implies a higher
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Fig. 7. Cumulative distribution function (CDF) of the delay errors for three
network sizes and 30 forecast updates disseminated in the network.

frequency of larger errors. This is caused by the higher amount
of long paths, on which errors are more likely to sum up.
Despite this observation, delay errors are at a low level and
hence acceptable for the intended purpose.

3) Data Collection Interval: We also analyzed the impact
of the network traffic on dissemination by varying the data
creation interval of each node from 30 s to 2min. The per-
node results are depicted in Fig. 8. The figure shows that
in most cases, there is a near-linear relationship between
the data creation interval of the nodes and the dissemination
delay. As outlined in Sec. IV-C, this is an expected behavior,
since dissemination delay is primarily impacted by the average
transmit intervals of the individual nodes. The latter scale
almost linearly with the per-node packet creation interval,
hence the linearity of dissemination delay.

Furthermore, the results indicate that the standard deviation
also increased with the packet creation interval. This is due
to the fact that in networks with lower traffic, packet loss has
a higher impact on dissemination delay. However, there are
exceptions to this rule. As an example, node 49 reports the
same (average) delay for data creation intervals of 60 s and
90 s. This is caused by a slightly changed network connectivity
in between the experiment runs, leading to a different packet
flow in the network. In the second case (90 s), node 49

forwarded less packets than in the other experiments.
4) Harvest Forecast Sizes: As a last step, we evaluated

the influence of harvest forecast sizes on dissemination. For
this purpose, we ran experiments with 15 nodes with harvest
forecast sizes of 4B, 10B, and 20B based on the results
in [26]. Each node created a new data packet for collection
every 60 s.

The reason of this investigation was to clarify whether
longer forecasts promote beacon loss, leading to a larger delay,
and interfere with the tight timings of ORiNoCo. Our results
indicate none of these effects for the considered forecast sizes.
We noted successful reception of all forecast updates and an
average delay between 27 s and 28.8 s in the three experiments,
where the smallest figure was surprisingly observed for 20B
forecasts updates. Average per-node delays were 44.2 s, 50.1 s,
and 38.0 s for forecast sizes in increasing order.

5) Limitations: The current dissemination concept relies on
steady data collection. One major implication is that in case
of, e.g., event-detection scenarios, dissemination delay will
deteriorate and become unpredictable. This can be overcome
by dummy collection data. In the easiest case, such data would
be created periodically. A better approach would be to exploit
the periodicity of forecast updates, so that nodes start sending
out dummy collection data when their current forecast turns
older than the update interval. We will investigate this issue
in our future work.

B. System Integration Test

Finally, we validated the functionality of the entire system
in a two-tired process.

First, we tested the correctness of the compression and
decompression implementations. For this purpose, we fed the
compression algorithm, running on the base station, with the
cloud-cover data set from [26]. The compressed forecasts were
sent to a Memsic Iris sensor node, attached via the MIB520
interface board over the serial line. Upon reception of the
compressed forecasts, the software running on the sensor node
performed the decompression and sent the result back to the
base station via the serial line. As a final step, the original
input forecast was compared with the result produced by the
sensor node. With this setup, we tested typical configurations.
In particular, we varied the number of forecasted days from 1
to 4 and used time resolutions of 1 to 4 h.

Second, we manually compared cloud-cover online fore-
casts with the results produced by parsing those online fore-
casts and converting them to the format needed by the station
for compression.

VI. CONCLUSION

Providing solar-harvesting sensor nodes with global weather
forecasts reduces their risk of temporary depletion and in-
creases their utility in terms of, e.g., a lower data collec-
tion delay. We presented a system architecture and a fully
functional implementation that periodically obtains weather
forecasts from freely available online weather portals and
disseminates these in the sensor network. To achieve a low
energy and resource overhead, we apply data compression
and piggy-back the forecasts onto existing collection data
traffic. The results of several testbed experiments show that
all forecasts are eventually received by all nodes. Delays
are in the region of several seconds and below 2min in all
cases. These are acceptable numbers when considering that
forecasts are updated at most once an hour. We also derived
theoretical worst-case estimates for the dissemination delay
that we validated experimentally.

As a next step, we will deploy a solar-harvesting, multi-
hop test network that makes use of the presented system.
We are currently implementing the required changes for the
online consumption adaptation algorithm to integrate weather
forecasts disseminated into the network. Furthermore, we
intend to improve our dissemination strategy to cope with low
sensing rates and event-driven applications.
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