
RoCoCo: Receiver-initiated Opportunistic Data
Collection and Command Multicasting for WSNs

Andreas Reinhardt1 and Christian Renner2

1 TU Clausthal, Clausthal-Zellerfeld, Germany
andreas.reinhardt@tu-clausthal.de

2 Universität zu Lübeck, Lübeck, Germany
renner@iti.uni-luebeck.de

Abstract. Many data collection protocols have been proposed to cater
for the energy-efficient flow of sensor data from distributed sources to a
sink node. However, the transmission of control commands from the sink
to one or only a small set of nodes in the network is generally unsup-
ported by these protocols. Supplementary protocols for packet routing
and data dissemination have been developed to this end, although their
energy requirements commonly thwart the low-power nature of data col-
lection protocols. We tackle this challenge by presenting RoCoCo in this
paper. It combines data collection and dissemination by extending the
low-energy ORiNoCo collection protocol by means to reconfigure sub-
sets of nodes during runtime. Synergistically leveraging existing message
types, RoCoCo allows for the definition of multicast recipient groups
and forwards commands to these groups in an opportunistic fashion. Re-
lying on Bloom filters to define the recipient addresses, RoCoCo only
incurs small memory and energy overheads. We confirm its feasibility by
evaluating the introduced delays, command success rates, and its energy
overhead in comparison to existing collection/dissemination protocols.

Andreas Reinhardt and Christian Renner. RoCoCo: Receiver-initiated Opportunistic Data Collection and Command Multicasting
for WSNs. In Proceedings of the European Conference on Wireless Sensor Networks, EWSN,’15, Porto, Portugal, February 2015.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of
scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright
holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will
adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission of
the copyright holder.

1 Introduction

Wireless sensor networks (WSNs) are often used to collect environmental param-
eters from a range of locations at a single sink node. As the underlying embedded
sensing devices are commonly confined in their available energy budget, many
energy-efficient data collection protocols have been developed (e.g., [30,9,4]).
These protocols are optimized for the predominant traffic type in WSNs, namely
data being relayed from sensor nodes towards the sink, and thus allow for in-
creased operational times of such networks. As collection protocols generally do
not provide support for the transmission of messages from the sink to one or
multiple nodes, however, changing the network configuration during runtime is
complicated. If supported by the collection protocol at all, control messages (e.g.,
to change a node’s sampling rate or to temporarily suspend its data collection)

can only be flooded to all devices in the network. Besides drastically increas-
ing the network’s energy demand, having to flood each control message näıvly
through the network also represents a scalability issue.

To alleviate this problem, dedicated WSN routing protocols have been de-
vised (e.g., [29,8]). As they mostly focus on low delays while their energy con-
sumption only plays a secondary role, however, they effectively defeat the data
collection component’s low-power operation when both are combined. Due to the
inherent differences between data collection and control command routing, the
simple combination of two such solutions is also generally suboptimal in terms
of the resulting performance and energy expenditure. In order to overcome these
limitations, we present RoCoCo, a sophisticated fusion of data collection and con-
trol command multicasting. Based on the low-energy ORiNoCo data collection
protocol [27], it follows the primary objective of allowing for enduring operation
on a tight energy budget. At the same time, RoCoCo seamlessly integrates com-
mands and routing information into the messages used by the collection protocol
in order to transfer packets from the sink to any set of nodes in the network. As a
result, reconfiguration and control of individual devices becomes possible during
runtime with RoCoCo at a small energy overhead. Our approach is very differ-
ent from existing routing protocols like RPL [29], where a measurable amount
of routing information needs to be stored at the nodes. Instead, RoCoCo relies
on probabilistic data structures of constant size to make its routing decisions.
We make the following contributions in this paper:

– We briefly revisit the fundamental mechanisms behind ORiNoCo and provide
more detail on how destination addresses are specified by RoCoCo.

– We present RoCoCo’s underlying design decisions in more detail, and high-
light how it opportunistically combines energy-efficient data collection and
the possibility to emit control commands to sets of nodes.

– We evaluate our solution in comparison to existing combinations of collection
and dissemination protocols by means of testbed experiments as well as high-
resolution power measurements.

2 Problem Statement and Background

The collection of data from distributed sensors has manifested itself as the pri-
mary application domain of WSNs. A myriad of corresponding deployments
have been presented in literature, including the observation of volcanoes [28],
glaciers [19], and the spreading of animal species [13]. With batteries represent-
ing the predominant energy source for the distributed nodes, however, the sensors
are bound to tightly restricted energy budgets. To still achieve reasonable opera-
tional times, data collection protocols (e.g., MintRoute [30], CTP [9], Dozer [4])
were designed to forward data to the sink in an energy-efficient manner.

While catering to the transmission of data from the nodes to the sink, send-
ing control commands from the sink to individual nodes or groups of nodes is
generally beyond the capabilities of these protocols. In real applications, it may

however be necessary to reconfigure a subset of nodes during runtime. Exist-
ing protocols to distribute such messages with a high probability of reaching
the destination node thus often rely on broadcasting the data through the net-
work, either by means of simple flooding or by using dissemination protocols
like Trickle [16], Drip [26], or DIP [17]. None of these protocols has, however,
been designed to transmit commands to a subset of nodes only, and neither have
they been developed with a focus on their seamless integration with existing
collection protocols. Instead, dissemination protocols are commonly orthogonal
to the underlying data collection protocol, making them easily interchangeable
at the price of lower energy efficiency due to the separation of components.

In this paper, we overturn this traditional separation of components by pre-
senting RoCoCo. It combines an energy-efficient data collection protocol with
means to control individual nodes or groups of nodes. We show how the fusion
of functionalities can lead to a dissemination of control data at little energy
overhead. Likewise, due to the use of probabilistic data structures to store the
destination set for control commands, only little extra memory is required. Fi-
nally, by piggybacking control commands on messages that are sent by the data
collection protocol in any case, no extra packet overhead is introduced. RoCoCo
represents a novel combination of collection and dissemination protocols, yet it
builds on a contribution that we have made in prior work. We thus briefly revisit
ORiNoCo as follows to cater for a better understanding.

2.1 ORiNoCo: Opportunistic Data Collection

The opportunistic receiver-initiated no-overhead collection (ORiNoCo) protocol
is a data-collection protocol for low-power sensor networks [27]. To achieve low
power consumption, ORiNoCo duty-cycles the radio and bases its communica-
tions on low-power probing. Figure 1 illustrates a packet forwarding procedure
from sender S to receiver R. Both nodes switch on their radio periodically to
send short beacons that advertise their readiness to receive a packet. Each of
these beacons contains a metric that models the node’s path cost when forward-
ing to the sink, e.g., the hop count. If no data packet is received as response to
the beacon within a short period Thld, the node switches off its radio again and
waits a time Tslp, the sleep interval, before transmitting its next beacon.

If a node S has either created a data packet itself or needs to forward data
from other nodes, it switches on its radio and waits for beacon messages. Upon
reception of a beacon, S decides whether to send its data packet depending on
the path cost metric contained in the beacon. If the beacon’s sender R offers
a suitable cost, i.e., it is closer to the sink, S transmits its data packet after a
small random back-off (at most Thld). Successful packet reception is acknowl-
edged by R through a beacon addressed to the data sender. Upon reception of
the acknowledging beacon, S switches off its radio, if there are no more pack-
ets, or continues transmitting further packets to R. Acknowledging beacons are
overheard by all nearby nodes with data to send and thus continue to serve their
purpose as invitations to send data. The random back-off before packet trans-
missions is used to prevent collisions, should there be more than one node with

S

R

B D D

B B B B

data available random back-off

sleep interval TslpThld Thld

sleeping listening sending receiving

Fig. 1. Fundamental operation principle of ORiNoCo (B: beacon, D: data)

data to send. If S overhears a data packet to R (during its back-off), it aborts its
sending process and waits for the next beacon. Finally, acknowledging beacons
are also used to maintain the path cost metric of each node. In case the hop count
metric is being used to describe the path cost, this means that a node adapts its
distance to the lowest value in its vicinity plus one. To cope with link failure and
changing network topology, a node resets its distance metric to a large value, if it
does not receive an appropriate beacon to forward its data within a predefined
time interval. In summary, ORiNoCo builds a tree-like routing structure that
relies on a path cost metric to ensure that messages are only relayed towards the
sink. Instead of maintaining static routes, however, each node opportunistically
forwards data to any node that is closer to the sink. ORiNoCo thus has a better
response to changing channel qualities and does not require nodes to maintain
routing state information locally.

3 RoCoCo: Combining Opportunistic Data Collection
and Control Command Multicasting

Extending a data collection protocol by means to transfer control messages from
the sink to data collecting nodes poses a number of challenges. Especially as our
primary objective is to retain the collection protocol’s low power consumption,
avoiding the energy overhead introduced by additional packet transmissions is
of utmost importance. We thus present in this section how the newly introduced
RoCoCo data fields are symbiotically combined with existing messages.

3.1 Destination Addressing

By convention, the sink is the final destination for all data packets in collection
WSNs. Control messages, in contrast, are emitted by the sink and addressed to
one or more nodes in the network. A first required step towards the distribu-
tion of a control command is thus the specification of its intended recipients.
Existing protocols only support addressing a single node [29] or all nodes in the
network [16,17]. We, however, argue that subsets of a WSN (e.g., nodes fitted

with certain sensor types, boards of a certain hardware revision, or spatially
co-located devices) may also be recipients for an emitted control command. We
hence specifically design RoCoCo such that control messages can be addressed to
a multicast receiver set. Depending on the number of entries, however, the set can
potentially grow very large. Additionally, for WSN operating systems without
dynamic memory allocation, a worst-case amount of memory must be allocated
when growing lists of destination node identifiers need to be accommodated. The
usage of a memory structure with constant overhead is thus inevitable to cater
for the scalability to networks with a large number of nodes. Hence, we have cho-
sen to store the set of recipient addresses for each control message in a Bloom
filter [3]. The use of Bloom filters also represents the major difference to other
WSN routing schemes3, because it eliminates the need to maintain dynamically
expanding lists of routable destinations.

Due to the constant memory demand of Bloom filters (BFs), the required
buffers can be statically allocated, which strongly contributes to their perfor-
mance on embedded systems. Because an infinite number of entries can be added
to a BF, they also fulfill the requirement for message multicasting. Only the risk
of false positives due to their probabilistic nature represents a downside of their
usage. This potentially leads to situations in which a node may receive and ex-
ecute a command although it was not among the intended recipients. As the
BF is populated at the sink, where the identities of all data collecting nodes are
implicitly known from the data collection, however, false positives can be de-
tected before the command has been emitted. Details about the implementation
and dimensioning of the Bloom filters used in RoCoCo are provided in Sec. 4.1,
where we also analyze the introduced energy overhead.

3.2 Command Definition

Once a control message has reached its destinations, the action to take must be
determined. To achieve fast reaction times, we have decided in favor of storing
command identifiers within the control message. For this purpose, a field of
one byte has been added to each control message, for which we have defined
an initial configuration, including, e.g., commands to change the sampling rate.
Please note that RoCoCo is not bound to the one byte limit for the command
fields and can easily accommodate larger command definition fields. As a result
of mapping the range of commands to internal functions, commands from the
defined set can be immediately executed upon reception of a control message.
For the transfer of larger command payloads, a reserved command identifier
prompts the receiving nodes to fetch the actual command data from the sink.

3.3 Duplicate Detection

Due to the fluctuating channel qualities in WSNs, multicast control messages
may reach the same node twice or even more often. However, some commands

3 with the exception of our previous work CBFR [21] and Duquennoy et al.’s ORPL [8],
neither of which however supports multicast addressing.

Data source

Transmit long beacon
on mismatch between
received and local version

Transmit short beacon
when received and local
version match

dest
cmd
ver

Destination set

Command ID

Version number

RoCoCo fieldsDestination

Beacon

Beacon
(ACK)

Data ve
r

Data ve
r

Beacon
(ACK) de

st
cm

d
ve

r
Fig. 2. Visual comparison of ORiNoCo and RoCoCo communication sequences for the
transmission of 2 data packets. Fields added by RoCoCo are highlighted.

(e.g., requests to transfer a node’s complete history of collected data) should
only be executed once upon the first reception of the control message. In or-
der to avoid the repeated execution of commands, we have thus incorporated
a version number into the RoCoCo control messages. This two byte field is in-
cremented whenever the sink has made any changes to at least one of the two
aforementioned control fields (destination set and command identifier). As a
version number thus inherently relates to a set of destination nodes and the
command to execute, it can be used as a shorthand form to refer to these fields.
As a result, RoCoCo uses version numbers not only as a means to avoid the
duplicate execution of commands, but also to identify if a node in the network
holds a newer/older command and thus needs updating. As version numbers are
assigned by the sink, their consistency throughout the network is guaranteed.

3.4 RoCoCo Messages

As highlighted above, we assume a WSN in which data collection plays a major
role, whereas the dissemination of control commands happens significantly less
frequently. Our primary design goal has thus been to integrate the routing in-
formation fields described above into ORiNoCo in a way that retained its ultra
low-power operation. As a result, RoCoCo leverages ORiNoCo’s existing peri-
odic beacon and data messages in a synergetic fashion instead of defining its own
message types. As follows, we describe RoCoCo’s modifications to the existing
packets, that result in no additional overhead on regular beacon transmissions
and only a single field added to each data packet.

Extended Beacon Messages Beacons are being sent by potential packet re-
ceivers and both serve as invitations to send as well as acknowledgments for
previous data transmissions. We thus leverage them in order to disseminate con-
trol messages into the network by means of the three control message fields

described above. By default, however, these optional fields are not part of trans-
mitted beacons; beacon sizes thus are unchanged in comparison to ORiNoCo.
Only when sender and receiver of a data message carry different versions of their
routing information (cf. Sec. 3.5), these fields are transmitted in order to update
the receiving node with the latest routing information. For the sake of clarity, we
term the beacon messages that bear none of RoCoCo’s newly introduced fields
(destination set, command identifier, version number) as short beacons. We re-
fer to beacons that contain these three entries as long beacons. To enable the
receiver to interpret the beacons correctly, a flag was added to the previously
existing ORiNoCo beacon flags field to distinguish beacon types.

Extended Data Messages Similar to the beacons, the main objective when
modifying the second-most frequently used message type, i.e., data messages,
was to keep the introduced overhead small. In addition to the application-defined
payload, RoCoCo thus only relies on the version of the local routing information
to be transmitted along with data packets. All data packets have been augmented
by the version field that identifies the current routing information version of
their sender. The data recipient is thus implicitly able to detect whether its
communication partner has outdated routing information. If this is the case, a
long acknowledgment beacon can be easily used to update the data source to
the current routing version. In case both devices share the same version of the
routing information, the data message is acknowledged using a short beacon.

Command Confirmation Messages Finally, we added a new message type,
allowing nodes to acknowledge to the sink that they have received and executed
a command. This confirmation message is a regular data packet and contains
the control message version number.

3.5 Summary: RoCoCo vs. ORiNoCo Communication Flow

In Fig. 2, we visually compare the communication flows of ORiNoCo and RoCoCo.
While ORiNoCo would only transmit the contents shown in black and white, the
fields newly added by RoCoCo and required for the control command multicast-
ing are highlighted. The operation annotation on the right-hand side represents
the comparison between the received and node’s local version. After the first data
transmission, the destination has detected a mismatch between its local and the
received version, such that the returned acknowledgment beacon is augmented
by the control command data. Subsequently transmitted data packets reflect the
newest version number, thus the destination only transmits short acknowledg-
ing beacons for all successive packet transmissions. Direct neighbors of the sink
hence receive the updated routing information as soon as they have transmitted
a packet (cf. Sec. 2.1). Still, consistent with the opportunistic nature of the data
collection, we need to point out at this point that there is no guaranteed time
bound for a control command to reach its destination.

0 20 40 60 80 100 120

0

20

40

60

80

100

8 byte filter �

24 byte filter �

64 byte filter �

addresses added to bloom filter

co
lli

si
on

pr
ob

ab
ili

ty
(%

) 1 hash
2 hashes
3 hashes

Fig. 3. Collision probability when adding a further node address to the BF

4 Evaluation

We conduct practical evaluations of RoCoCo in order to prove both its ultra
low-power operation and its potential to route control messages to sets of nodes.

4.1 Bloom Filter Dimensioning and Beaconing Energy Consumption

In RoCoCo, we calculate the hash functions according to Bob Jenkins’ Integer
hashing4. In case multiple hash functions are being used, the input data is com-
bined with index of the hash function (similar to the notion of a cryptographic
salt) prior to hashing. Bob Jenkins’ hash has particularly been chosen because
of its speed and its minimal resource demand on motes [21]. In order to add a
destination address to the BF, we take the output of each hash function modulo
the size of the Bloom filter and set the resulting bit offsets in the BF.

As BFs are present in all long beacon messages, their length has an immediate
impact on the protocol’s energy consumption. Choosing small BF sizes thus
seems desirable to minimize the energetic overhead, however, it simultaneously
increases the risk of false positives. In contrast, larger BFs increase the size
of long beacons and thus inherently incur a higher energy demand for their
transmission. We hence analyze the tradeoff between BF size and the energy
demand for its transmission. To this end, we determine the likeliness of collisions
by inserting 120 sequential 16-bit node addresses into Bloom filters of 8, 24,
and 64 bytes in size. In the experiment, we vary the number of hash functions
from 1 to 3. The averaged collision results for 50,000 runs of the experiment
with different initial addresses are shown in Fig. 3. It can be observed that the
usage of a single hash function has a higher probability of collisions when a small
number of addresses are inserted into the filter. At the same time, however, a
larger number of hash functions leads to more collisions when more elements are
inserted into the BF. A tradeoff for both the filter size and the number of hash
functions thus needs to be found depending on the application’s requirements.

4 Available at http://burtleburtle.net/bob/hash/integer.html

http://burtleburtle.net/bob/hash/integer.html

Table 1. Energy demand of beacon transmissions

BF size Energy Overhead

none 155.4 µJ reference
4 bytes 181.3 µJ 16.7 %
8 bytes 199.4 µJ 28.3 %
12 bytes 224.4 µJ 44.3 %

BF size Energy Overhead

16 bytes 231.2 µJ 48.7 %
20 bytes 249.7 µJ 60.6 %
24 bytes 275.9 µJ 77.5 %
28 bytes 295.7 µJ 90.3 %

BF size Energy Overhead

32 bytes 326.5 µJ 110.1 %
40 bytes 369.2 µJ 137.5 %
48 bytes 413.2 µJ 165.8 %
64 bytes 433.5 µJ 179.0 %

The number of nodes expected in the network and the permitted degree
of false positives are, however, not the only criteria used for dimensioning the
BF. Choosing its size also depends on the allowed energy consumption that is
incurred by transmitting larger routing information packets. We have thus mea-
sured the energy demand to transmit Bloom filters of different sizes, and show
the results in Table 1. All measurements were collected by means of a Hitex Pow-
erScale [12] unit and represent the mean energy consumption as determined from
three to five packet transmissions each. The table confirms that the transmission
of filters has a direct impact on the energy demand over regular short beacons,
with Bloom filters of 64 bytes almost tripling the beaconing energy demand.

4.2 Testbed Evaluation Setup

For all testbed experiments, we have used the following parameter set unless
stated otherwise. Each node created collection data packets at an interval of
1 min. The time of the first packet was randomly chosen within the first 1 min
after node reboot to simulate the behavior of an asynchronously started and
operated network. Buffering queues were installed on each node with a length of
30 packets to cater for intermittent disconnection of nodes in the network due
to bad radio conditions, or when incoming packets needed to be buffered before
forwarding. Unless congestion occurred, collection data were thus generally sent
during the next transmission opportunity. On the data collecting nodes, the
mean sleep interval Tslp has been set to 750 ms with a random variation of 10 %.
In order to achieve higher delivery, the sink has been configured to provide
opportunities to receive data (by sending beacons) every 125 ms. For all nodes,
we used a waiting time of Thld = 8 ms. We employed the hop count as path cost
metric and enabled the duplicate detection built into ORiNoCo.

We conducted our experiments on WiseBed (Lübeck site) [6]: This testbed is
comprised of 54 TelosB nodes, numbered from 0 to 70, with each fourth address
unallocated and 36 functioning nodes at the time of evaluation. Due to the size
of this testbed, we have used a Bloom filter of 8 bytes in size. In all experiments,
the sink issued a new command every 10 min. In order to study command and
confirmation success rates and delays with an equal number of commands sent
to each node, the sink always added all nodes to the BF. We conducted three
experiments with different transmission powers (0 dBm, −7 dBm, and −15 dBm)
to study the impact of connectivity, network depth, and density. Each experiment
was run for at least 20 h, equivalent to 120 commands issued by the sink.

0

2

4

6

ho
p

co
un

t

0

20

40

60

av
g.

da
ta

se
nd

in
te

rv
al

(s
)

0

20

40

60

80

100

co
m

m
an

d
de

la
y

(s
)

5 2 53 1 4 45 9 46 41 49 16 8 56 42 40 18 44 52 21 14 20 17 22 28 32 29 33 34 30 70 68 69 65 64 66

0

2

4

6

8

node ID

co
nfi

rm
at

io
n

de
la

y
(s

)

Fig. 4. Command and confirmation delay for −7 dBm transmission power. Nodes are
ordered by average hop count. The figure also shows the average data (collection data
and confirmations) send interval. Error bars indicate the single standard deviation.

4.3 Command and Confirmation Delays

A crucial measure for control systems is the reaction time, or command delay, of
a node. By design (of RoCoCo), a node can only receive updated beacons when
it has data to send and when (at least one of) its neighbors has already received
the update. Therefore, the command delay to a node depends on several factors,
of which the most important ones are (1) the data send interval of a node (i.e.,
its traffic rate), (2) its distance to the sink (in hops), and (3) the command delay
to its neighboring nodes that are closer to the sink (i.e., its potential parents).

A detailed study is presented in Fig. 4. It shows the general trend that nodes
with a similar data send interval (second row) exhibit a similar command delay
(third row). Note that the data send interval may be smaller than 1 min (cf.
Sec. 4.2), because nodes also forward (send) remote data. Data send intervals
and, hence, command delay are highly topology-dependent. The figure also indi-
cates an impact of the distance to the sink (first row) on the command delay. For
nodes close to the sink, however, the data send interval is the dominating factor;
e.g., compare nodes 1 and 4. However, the figure reveals exceptional behavior,

0 10 20 30 40 50

0

20

40

60

80

100

avg. data send interval (s)

m
ea

n
co

m
m

an
d

de
la

y
(s

)

0 dBm
−7 dBm

−15 dBm

1 2 3 4 5 6

0

20

40

60

80

100

mean hop count

m
ea

n
co

m
m

an
d

de
la

y
(s

)

0 dBm
−7 dBm

−15 dBm

Fig. 5. Effect of network density on the relationship of command delay vs. send interval
and hop count, respectively.

e.g., nodes 2 and 53 have an equal hop count and a similar command delay, yet
their send intervals differ by a factor of almost two. This is due to asynchronous
packet creation among all nodes (cf. Sec. 4.2) and more likely for nodes with
low traffic. In contrast, the confirmation delay is mainly affected by the hop
count, as confirmations are sent as regular collection data packets. Variations
stem from link qualities and the number of neighbors per node. Results for the
two experiments with different transmission power settings are similar.

Figure 5 analyzes the impact of network density. For dense networks (0 dBm),
hop counts are lower while send intervals are longer, because shorter paths result
in less traffic per node. For sparse networks (−15 dBm), hop counts are higher
while send intervals are shorter, because longer paths result in more traffic per
node. As a consequence, the spread of command delay is higher for sparse net-
works. However, some nodes (those close to the sink with a high traffic load)
achieve extremely low command delays, whereas nodes with high distance to
the sink are faced with longer command delays.

Next, we consider the command execution confirmation that is sent when-
ever a node has received a control message. As this confirmation travels in the
usual direction (i.e., where all collected data flows) and represents an individual
packet, its collection is considerably faster than the distribution of command
messages in many cases. We assessed the round-trip time from the time when
the sink issues a new command (i.e., it updates the Bloom filter) and finally re-
ceives the confirmation. For dense networks (0 dBm) the round-trip time is very
close to the command delay. Due to the low hop count and the high number
of potential parents, confirmations are reliably and quickly transported to the
sink. On the contrary, the round-trip time may considerably deviate from the
command delay in sparse networks, where long paths and few potential parents
exist. This is supported by Fig. 6, which portrays the fraction of the round-trip
time (RTT) caused by the confirmation. For the dense network setup, this value
stayed below 14% in all cases, while it exceeded 56% in ten cases for the sparse
network (not shown in the figure).

0 20 40 60 80 100

0

10

20

30

command delay (s)

co
nfi

rm
at

io
n

de
la

y
/R

T
T

(%
)

0 dBm
−7 dBm

−15 dBm

1 2 3 4 5 6

0

10

20

30

mean hop count

co
nfi

rm
at

io
n

de
la

y
/R

T
T

(%
)

0 dBm
−7 dBm

−15 dBm

Fig. 6. Effect of network density on round-trip time vs. command delay and hop count.

Table 2. Average node power consumption for RoCoCo and existing protocols

TX power CTP CTP/Drip CTP/DIP CTP/DHV ORiNoCo RoCoCo

0 dBm 2.0 mW 3.9 mW 2.0 mW 4.5 mW 1.4 mW 1.4 mW
−15 dBm 1.6 mW 3.8 mW 2.0 mW 4.5 mW 1.4 mW 1.4 mW

4.4 Command Success Rates and Energy Penalty

To assess the quality of command dissemination in RoCoCo, we analyzed the suc-
cess rates of command and confirmation reception. For the former, we calculated
the percentage of received command messages (regardless of their destination)
per node. For the testbed experiments with 0 dBm and −7 dBm, all commands
and confirmations were received. For the experiment with −15 dBm, the com-
mand reception rates of all nodes range from 96% to 100% with the exception of
a single node with only 90%. The percentage of command confirmations received
at the sink is between 99% and 100%.

We also assessed the energy consumption penalty of RoCoCo vs. ORiNoCo
by analyzing the percentile of long beacons compared to the overall number of
beacons. The per-node percentile ranges from 0.1% to 1.5%. Across the entire
network, the percentile of long beacons is between 0.2% and 0.4%. For a Bloom
filter size of 8 bytes this equals an additional energy expenditure of less than
0.11% across the entire WSN and of less than 0.42% per node. We did not
analyze the additional energy consumption incurred by the extra version field in
data packets, because the impact of data packet length is minor compared to the
energy consumption due to waiting for a beacon. This, however, represents the
main source of energy consumption of asynchronous low-power MAC protocols.

4.5 Comparison against Existing Protocols

In order to put RoCoCo’s energy demand into perspective, we have compared
it against a combination of the well-known data collection protocol CTP [9]
and the dissemination protocols Drip [26], DIP [17], and DHV [7]. We used the
publicly available TinyOS implementations of these protocols and enabled the

0

1

2

3

4

D
ri

p
co

m
m

an
d

de
la

y
(s

)

5 4 45 1 53 46 9 2 40 16 41 56 44 18 8 42 52 49 20 21 14 22 34 28 17 33 32 29 30 68 70 69 64 65 66

0

20

40

60

node ID

D
ri

p
sp

ee
d-

up

command delay
round-trip time

Fig. 7. Speedup of command delay and round-trip time of CTP/Drip vs. RoCoCo
(−7 dBm power). Nodes are ordered by command delay (upper row) of Drip.

low-power listening MAC. The protocols were configured to use the same param-
eters as stated in Sec. 4.2, however with the command creation rate increased
to one update per minute. The experiments were run in a one-sink one-node
configuration, and the average energy consumption of the data collecting node
has been practically determined for each protocol combination. The results are
shown in Table 2 for transmission power settings of 0 dBm and −15 dBm. Besides
highlighting that RoCoCo does not increase the energy demand of ORiNoCo
measurably, the results also confirm that the RoCoCo node requires 30% less
energy than the next most energy-efficient approach that combines collection
and dissemination (CTP/DIP).

The combination of CTP/Drip was also run on the testbed, and statistics
about the success rates plus command and confirmation delays were collected.
While success rates of distributed commands are similar, CTP causes a lower
success rate of confirmations; e.g., the latter ranges from 83% to 99% for the
experiment with 0 dBm. It is even lower in the other experiments. Moreover,
Fig. 7 shows the delays for an experiment with a transmission power of −7 dBm.
In a few cases, CTP/Drip leads to a speedup factor in excess of 25 for nodes with
a low command delay and close distance to the sink (primarily one- and two-hop
neighbors). This speedup reduces to a factor of 10 to 25 for nodes farther away
from the sink. Round-trip speedups are also around a factor of 10 for these nodes.
Results for the other two experiments are similar. While the delay of command
confirmations is similar between CTP/Drip and RoCoCo, command delay (and
hence round-trip time) is higher for RoCoCo by design. However, note that
RoCoCo has deliberately been designed to accept an increased command delay
in favor of its low-power operation, while its delays (on the order of seconds) are
still practical for many WSNs.

5 Related Work

Data collection in WSNs is predominantly based on static routing trees rooted
at the sink (e.g., MintRoute [30]). With the introduction of opportunistic data
collection, however, the restriction that each node may at most have one single
parent has been removed. This possibility to choose another node for forwarding
data has been shown to bear the potential for improving data throughput and
reducing energy consumption [20,2]. ORW is an opportunistic data collection
algorithm for sensor networks [15] and in some aspects similar to RoCoCo, al-
though there are notable differences. While RoCoCo does not track information
about its neighborhood explicitly, ORW relies on estimates such as the number
of potential parents and link qualities. Most other approaches also rely on assess-
ing link qualities, a difficult challenge in sensor networks due to the instability
and low predictability of low-power wireless links. Alizai et al. hence suggest to
exploit unstable, but bursty, links in [1]. Their proposed algorithm improves the
performance of multi-hop routing, although an additional energy expenditure
for link-quality estimation is still required.

In the domain of multicasting in WSNs, Sheth et al. presented the VLM2

system in [23], which caters for the routing of multicast messages by maintain-
ing stateful route information on intermediate nodes. Similarly, Chun and Tang
proposed a multicasting mechanism in [5] that relies on message flooding and
subsequent local matching against existing multicast group IDs. In both solu-
tions, nodes can only subscribe to pre-defined multicast groups; a dynamic com-
position of multicast groups is not possible. In [24] and [22], the application of
multicasting in IPv6-enabled sensor networks has been presented. The primary
goal of these works is to enable nodes to join and leave IPv6 multicast groups
during system operation. Neither the resulting energy demand nor the incurred
routing overhead are discussed in detail, and thus their applicability in WSNs
with limited energy budgets is unclear. While aforementioned approaches are
primarily based on the composition of multicast groups, a number of contribu-
tions have analyzed the optimum structure of the routing tree in order to achieve
delivery of messages at the smallest possible overhead ([25,31,14,10]). The pa-
pers however exclusively focus on routing when group memberships are known
and provide no support for the dynamic creation and adaptation of groups.

Marchiori and Han use Bloom filters in [18] in order to route multicast mes-
sages without previous computation of the optimum route. While their PIM-
WSN protocol is optimized for fast message delivery, it does not comprise a data
collection component. Furthermore, it does not specifically strive for low energy
consumption, rendering it inapplicable for energy-constrained data collection ap-
plications. Likewise, Heszberger et al. specify routing information by means of
BFs [11], but do not combine it with a data collection protocol. Only recently,
Duquennoy et al. have also presented an opportunistic point-to-point routing
extension to RPL [29] in [8]. Similar to RoCoCo, their solution relies on Bloom
filters to individually address nodes in the IPv6 space. In contrast to RoCoCo,
however, ORPL does not support addressing a message to multiple recipients.

6 Conclusion

Due to the tightly limited energy budget of WSN nodes, ultra low-power pro-
tocols are essential to achieve long operation times. While a number of such
protocols have been proposed for data collection, emitting control commands
to the network is beyond their capabilities. We have thus presented RoCoCo,
a lightweight extension to ultra low-power data collection that allows the sink
to route control messages to sets of nodes. The fusion of data collection and
control command multicasting enables administrators to configure and control
the WSN during runtime. RoCoCo relies on Bloom filters to define the desti-
nation set and can thus operate in both small and large networks without any
modifications. Despite its opportunistic nature, practical testbed experimenta-
tion has shown that RoCoCo achieves command dissemination success rates of
96–100% with command delays in the order of tens of seconds, even in a 36-node
setting. While the observed command delays were higher than with CTP/Drip,
the additional energy expenditure incurred by its application was below 0.11%.
RoCoCo thus offers control command multicasting while maintaining the ultra
low-power operation of the underlying ORiNoCo collection protocol.

Acknowledgments

The authors would like to thank Daniel Burgstahler, Till Schmitt, and Daniel
Bimschas for their support.

References

1. Alizai, M.H., Landsiedel, O., Bitsch Link, J.A., Götz, S., Wehrle, K.: Bursty Traffic
Over Bursty Links. In: SenSys (2009)

2. Biswas, S., Morris, R.: ExOR: Opportunistic Multi-Hop Routing for Wireless Net-
works. In: SIGCOMM. pp. 133–144 (2005)

3. Bloom, B.H.: Space/Time Trade-offs in Hash Coding with Allowable Errors. Com-
munications of the ACM 13(7) (1970)

4. Burri, N., von Rickenbach, P., Wattenhofer, R.: Dozer: Ultra-Low Power Data
Gathering in Sensor Networks. In: IPSN (2007)

5. Chun, W., Tang, W.: Multicasting in Wireless Sensor Networks. In: NGNCON
(2006)

6. Coulson, G., Porter, B., Chatzigiannakis, I., Koninis, C., Fischer, S., Pfisterer,
D., Bimschas, D., Braun, T., Hurni, P., Anwander, M., Wagenknecht, G., Fekete,
S.P., Kröller, A., Baumgartner, T.: Flexible Experimentation in Wireless Sensor
Networks. Communications of the ACM 55(1) (2012)

7. Dang, T., Bulusu, N., Feng, W.C., Park, S.: DHV: A Code Consistent Maintenance
Protocol for Wireless Sensor Networks. In: EWSN (2009)

8. Duquennoy, S., Landsiedel, O., Voigt, T.: Let the Tree Bloom: Scalable Oppor-
tunistic Routing with ORPL. In: SenSys (2013)

9. Gnawali, O., Fonseca, R., Jamieson, K., Moss, D., Levis, P.: Collection Tree Pro-
tocol. In: SenSys (2009)

10. Han, K., Liu, Y., Luo, J.: Duty-Cycle-Aware Minimum-Energy Multicasting in
Wireless Sensor Networks. IEEE/ACM Transactions on Networking 21(3) (2013)

11. Heszberger, Z., Tapolcai, J., Gulyas, A., Biro, J., Zahemszky, A., Ho, P.H.: Adap-
tive Bloom Filters for Multicast Addressing. In: HSN (2011)

12. Hitex Development Tools GmbH: Hitex PowerScale with ACM Probe, available
online at http://www.hitex.com/, last access on 10 Sep 2014

13. Hu, W., Tran, V.N., Bulusu, N., Chou, C.T., Jha, S., Taylor, A.: The Design and
Evaluation of a Hybrid Sensor Network for Cane-toad Monitoring. In: IPSN (2005)

14. Hwang, S.F., Lu, K.H., Su, Y.Y., Hsien, C.S., Dow, C.R.: Hierarchical Multicast
in Wireless Sensor Networks with Mobile Sinks. Wireless Communications and
Mobile Computing 12(1) (2012)

15. Landsiedel, O., Ghadimi, E., Duquennoy, S., Johansson, M.: Low Power, Low De-
lay: Opportunistic Routing meets Duty Cycling. In: IPSN (2012)

16. Levis, P., Patel, N., Culler, D., Shenker, S.: Trickle: A Self-Regulating Algorithm
for Code Propagation and Maintenance in Wireless Sensor Networks. In: NSDI
(2004)

17. Lin, K., Levis, P.: Data Discovery and Dissemination with DIP. In: IPSN (2008)
18. Marchiori, A., Han, Q.: PIM-WSN: Efficient Multicast for IPv6 Wireless Sensor

Networks. In: WoWMoM (2011)
19. Martinez, K., Ong, R., Hart, J.: Glacsweb: A Sensor Network for Hostile Environ-

ments. In: SECON (2004)
20. Pasztor, B., Musolesi, M., Mascolo, C.: Opportunistic Mobile Sensor Data Collec-

tion with SCAR. In: MASS (2007)
21. Reinhardt, A., Morar, O., Santini, S., Zöller, S., Steinmetz, R.: CBFR: Bloom Filter

Routing with Gradual Forgetting for Tree-structured Wireless Sensor Networks
with Mobile Nodes. In: WoWMoM (2012)

22. Sá Silva, J., Camilo, T., Pinto, P., Ruivo, R., Rodrigues, A., Gaudêncio, F.,
Boavida, F.: Multicast and IP Multicast Support in Wireless Sensor Networks.
Journal of Networks 3(3) (2008)

23. Sheth, A., Shucker, B., Han, R.: VLM2: A Very Lightweight Mobile Multicast
System for Wireless Sensor Networks. In: WCNC (2003)

24. Silva, R., Sá Silva, J., Simek, M., Boavida, F.: Why Should Multicast be Used in
WSNs. In: ISWCS (2008)

25. Su, L., Ding, B., Yang, Y., Abdelzaher, T.F., Cao, G., Hou, J.C.: oCast: Optimal
Multicast Routing Protocol for Wireless Sensor Networks. In: ICNP (2009)

26. Tolle, G., Culler, D.: Design of an Application-Cooperative Management System
for Wireless Sensor Networks. In: EWSN (2005)

27. Unterschütz, S., Renner, C., Turau, V.: Opportunistic, Receiver-Initiated Data-
Collection Protocol. In: EWSN (2012)

28. Werner-Allen, G., Johnson, J., Ruiz, M., Lees, J., Welsh, M.: Monitoring Volcanic
Eruptions with a Wireless Sensor Network. In: EWSN (2005)

29. Winter, T., Thubert, P., Brandt, A., Hui, J., Kelsey, R., Levis, P., Pister, K.,
Struik, R., Vasseur, J., Alexander, R.: RPL: IPv6 Routing Protocol for Low-Power
and Lossy Networks. RFC 6550 (2012)

30. Woo, A., Tong, T., Culler, D.: Taming the Underlying Challenges of Reliable Mul-
tihop Routing in Sensor Networks. In: SenSys (2003)

31. Wu, S., Candan, K.S.: GMP: Distributed Geographic Multicast Routing in Wireless
Sensor Networks. In: ICDCS (2006)

http://www.hitex.com/

	RoCoCo: Receiver-initiated Opportunistic Data Collection and Command Multicasting for WSNs

