Andreas Reinhardt and Christian Renner. Remote Node Reconfiguration in Opportunistic Data Collection Wireless Sensor
Networks. In Proceedings of the IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks,
WoWMoM '14, Sydney, Australia, June 2014.

Remote Node Reconfiguration in Opportunistic
Data Collection Wireless Sensor Networks

Andreas Reinhardt

The University of New South Wales, Sydney, Australia

andreasr @cse.unsw.edu.au

Abstract—Traditionally, wireless sensor networks collect read-
ings from distributed embedded sensing systems and forward
them to one or more sink nodes. While many energy-efficient data
collection protocols have emerged as a result, the transmission of
control commands from a sink to individual nodes in the network
is generally unsupported by these solutions. We present how the
receiver-initiated opportunistic ORiNoCo data collection protocol
can be extended to allow for the reconfiguration of nodes at
minimal additional energy overhead. When our solution is being
applied, adaptations of the sensor sampling rates or node sleep
cycles can be easily controlled by the base station during runtime.

I. INTRODUCTION

Numerous data collection protocols for the energy-efficient
data transfer from multiple nodes to a sink have been proposed
for wireless sensor networks (WSNs), e.g., [1, 2]. As they
primarily target to optimize the data flow from nodes towards
the sink, however, these protocols do not provide support for
the reconfiguration of nodes during runtime (e.g., to change
their sampling rates). Instead, flooding or dissemination pro-
tocols like Trickle [3] or DIP [4], which distribute messages
to all nodes in the WSN, are generally applied to this end.
Unfortunately, these protocols neither support the addressing
of individual nodes nor have they been designed with a focus
on the energy-efficient integration with collection protocols.

In this paper, we thus present a solution that synergistically
fuses data collection and control command distribution. The
approach is based on the opportunistic receiver-initiated no-
overhead collection (ORiNoCo) protocol [5]. In a nutshell,
ORiNoCo achieves its low power consumption by duty-cycling
the radio and low-power probing. Once a node wants to
send data, it activates its radio and collects beacons from its
neighbors that carry a path cost metric (e.g., their distance
to the sink). The node then chooses the neighbor with the
best path cost, sends its data there, and returns to sleep mode.
In essence, ORiNoCo thus establishes a loosely coupled tree-
like routing structure, solely using the path cost metric to
ensure that messages are relayed towards the sink. It can hence
inherently cope better with changing channel qualities than
existing data collection protocols like [1] and [2].

Our presented bidirectional routing approach synergistically
adds command and routing information to ORiNoCo mes-
sages. By leveraging the existing message types for its opera-
tion, only a minimal energy overhead for the reconfiguration
of individual devices is introduced. Moreover, its very small
and constant memory overhead to all nodes in the WSN also

Christian Renner
Universitdt zu Liibeck, Liibeck, Germany
renner @iti.uni-luebeck.de

distinguishes our approach from existing routing protocols like
RPL [6] or ORPL [7], where much more routing information
must be stored locally at the nodes. As a result, the presented
seamless integration of routing capabilities into ORiNoCo is
simple and lightweight, while it adds the new feature of remote
node reconfiguration in data collection WSNs.

II. REMOTE NODE RECONFIGURATION IN ORINOCO

As our primary objective is to retain ORiNoCo’s ultra-low
power consumption, avoiding the energy overhead introduced
by additional packet transmissions is of utmost importance.
We thus present in this section which new data fields are re-
quired and how they are symbiotically combined with existing
ORiNoCo messages.

A. Required Additional Fields

Destination Addressing: The sink is by convention the des-
tination for all data packets in the WSNs under consideration.
Control messages, in contrast, are emitted by the sink and
addressed to devices in the network. For the distribution of
a control command, it is thus vital to be able to specify the
intended recipient, for which purpose a two-byte field for the
destination address is required.

Command Definition: The destination of a reconfiguration
message must be able to determine which action to take. To
minimize additional delays, command identifiers are stored
within the control message and can hence directly be extracted
from the message upon its reception. For this purpose, a field
of one byte has been added to each control message, for
which we have defined an initial configuration of frequently
used commands, including, e.g., requests to change a node’s
sampling rate or its transmission intervals.

Duplicate Detection: Control messages may reach the same
node multiple times, although they should generally only be
executed once upon their first reception. In order to prevent
the repeated execution of commands, we have incorporated
a version number field. Its value is incremented whenever
the destination node or the command identifier have changed.
As the version unambiguously refers to the recipient and
requested command, it serves both as a means to avoid the du-
plicate execution of commands and to identify if a neighboring
node needs updating. Version numbers are solely assigned by
the sink node, hence their consistency is guaranteed throughout
the network.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and
technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding
that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints
invoked by each author’s copyright. These works may not be reposted without the explicit permission of the copyright holder.

Data source Destination
\Eg\b
Beacon
(ACK)

Data
ccfm

Beacon
< (ACK)

Fig. 1. Communication sequence for the transmission of 2 data packets (newly
introduced fields are highlighted).

Transmit long beacon
on mismatch between
received and local version

dest
[omd

ver

Transmit short beacon
when received and local
version match

B. Modified and New Message Types

To retain ORiNoCo’s ultra-low power operation, we focus
on adding command information to its existing message types
where possible instead of defining new message types. The
following modifications to existing packets are required.
Beacon Messages: Beacons represent the most frequently
transmitted packet type in ORiNoCo, and we thus leverage
them in order to quickly disseminate control messages into
the WSN. To this end, support to carry the aforementioned
newly required fields is added. By default, however, these
optional fields are not part of transmitted beacons; beacon
sizes thus are unchanged in comparison to ORiNoCo and its
beaconing energy efficiency is retained. Only when sender
and receiver of a data message feature different versions (see
below), these fields are added to the beacon in order to update
the receiving node with the latest information. We term the
beacon messages without the newly introduced fields as short
beacons, whereas beacons that contain these three entries are
called long beacons. To enable the receiver to interpret the
beacons correctly, a flag was added to the previously existing
ORiNoCo beacon flags field to indicate the presence of the
command fields in the beacon.

Data Messages: While beacons originate from the sink, the
second-most frequently packet type, data packets, travel in the
opposite direction, i.e., towards the sink. By adding a node’s
current version to all transmitted data packets, the recipient
(which is closer to the sink by definition) can determine
whether a version mismatch exists, i.e., if a new command
should be propagated to the data source. If this is the case,
a long acknowledgment beacon can be easily used to update
the data source to the current routing version. In case both
devices share the same version of the routing information, the
data message is acknowledged using a short beacon.
Command Confirmation Messages: Finally, we added a
new message type, allowing nodes to acknowledge to the
sink that they have received and executed a command. This
confirmation message is sent as a regular data packet with
the command confirm (ccfim) flag set and contains the control
message version number for verification.

C. Communication Flow

In Fig. 1, the resulting communication flow is shown, and
any differences to the transmitted information by ORiNoCo are
highlighted. The operation shown on the right-hand side rep-
resents the comparison between the received and node’s local
version. After the first data transmission, the destination has
detected a mismatch between its local and the received version,
such that the returned acknowledgment beacon is augmented
by the control command data. Subsequently transmitted data
packets immediately reflect the newest version number, and
thus the destination only transmits short acknowledging bea-
cons for all successive packet transmissions. Because control
commands originate from the sink only, whereas the direc-
tion of data traffic is opposite, direct neighbors of the sink
receive the updated routing information as soon as they have
transmitted a packet. Iteratively, control commands are being
disseminated through the network, and move further away
from the sink with every node that transmits data and receives
the corresponding acknowledgment beacon.

IIT1. EVALUATION

We focus on a practical evaluation of our presented ap-
proach in a testbed setting in order to prove its potential to
route control messages to individual nodes in the network.
More precisely, we practically evaluate typical delays for
control commands to reach their destinations as well as the
time required until the command confirmation is received
at the sink again. We base our practical evaluations on the
WiseBed testbed [8], comprised of 54 TelosB nodes. Nodes
are located in office rooms at the University of Liibeck and
cover an area of approximately 15 mx50m.

A. Testbed Evaluation Setup

We have used 49 nodes in the testbed experiments as data
sources, and configured them to create a new data packet
with sensor readings every 2min. All nodes are furthermore
supplied with outbound packet buffers that can accommodate
up to 30 packets in order to cater for the intermittent dis-
connection of nodes due to poor channel conditions or when
incoming packets need to be buffered before they can be
forwarded again. Still, unless congestion occurred, all data
in the buffer were generally sent at the next transmission
opportunity. To retain ORiNoCo’s high energy efficiency, all
nodes in the field only wake up from sleep mode once every
750ms in order to announce their path cost by means of a
beacon. The wake-up interval is furthermore randomly varied
by up to 10 % in order to avoid continuous beacon collisions.
To allow for higher delivery rates, the sink is the only node in
the network that has been configured to provide opportunities
to receive data (by sending beacons) every 375 ms. The sink
issues a new command addressed to a single node in a round-
robin fashion every 10 min. In order to highlight the impact
of the network topology, we have configured the nodes to
use different transmission power levels (0 dBm, —7 dBm, and
—15dBm) in three separate runs, such that topologies with
different depths result.

10 gaBm . .o 150 - R
z —7dBm °§°* § %o
| H s a i O
%\ 710dB|ﬂQ x O AQA ﬁ x Q x
o) 4 a9 & & x8 o
TO100 o R e 100 | wrrcdoo8
8 [N P2, 9 8
g s2%s T2 I T T S o
08 ¥ oy a | S ©
< A Xx A x °
& o8 0% § 4 y o 8
<] | %o & A | g x
E.. 50 ()Q’ @ AAAA A 50 g . 3 ° o'
2 & i ¢ ¢« _7dBm
& 5% —15dBm
O e L B 0 — —
0 20 40 60 80 100 0 2 4 6

avg. data send interval (s) mean hop count

Fig. 2. Effect of network density on the relationship of propagation delay
and send interval and hop count, respectively.

B. Evaluation Results

Command Propagation Delay: Our first analysis considers
the command propagation delay, or reaction time, of a node.
As highlighted above, nodes can only receive beacons when
they have data to send. Hence, their opportunities to receive a
long beacon with updated command information significantly
depends on the data transmission interval. Figure 2 analyzes
the impact of the network density. For dense networks (i.e.,
when the transmission power is set to 0dBm), hop counts
are lower while transmission intervals are longer, because
shorter paths result in less traffic per node. For sparse networks
(transmission power settings of —7dBm and —15dBm), hop
counts are higher while transmission intervals are shorter,
because longer paths result in more traffic per node. Nodes
close to the sink with a high traffic load achieve extremely
low propagation delays, whereas nodes with high distance to
the sink are faced with longer propagation delays. However,
the propagation delay versus hop count is lower in sparse
networks, showing that shorter transmission intervals make up
for the increased path lengths.
Command Execution Confirmation: We now consider the
command execution confirmation that is sent whenever a node
has received a control message. As this confirmation travels
in the usual direction (i.e., where all collected data flows) and
represents an individual packet, its collection is considerably
faster than the command message propagation in most cases,
i.e., the confirmation delay makes up for less than 50% of
the round-trip time. We assessed the round-trip time from the
time when the sink issues a new command (i.e., updates the
routing version number) and finally receives the confirmation.
Due to the low hop count and the high number of potential
parents, confirmations are reliably and quickly transported
to the sink. However, the confirmation delay dominates the
round-trip time in some instances. This is supported by Fig. 3,
which portrays the fraction of the round-trip time (RTT)
caused by the confirmation. The figure reveals that, when
only a single node is addressed at a time, the ratio between
confirmation delay and round-trip time is not affected by the
hop count, i.e., the distance to the sink.
Command and Confirmation Success Rates: To assess
the quality of command dissemination in our approach, we

80 80
< A 0dBm A 0dBm
N B x —7dBm 1 x x —T7dBm
= o —15dBm o —15dBm
= 60 60
-4 a A
=~ — A — A
— o
S 40 ey g 40 oo g
.5 | oa o= o i TN o
= * A
£ 20 o4 fomn PARES x 20 §xi ¥ o538
€ RN X a - 2 i A~ 8
o o %o . a 8 wa 0O
S A ° %, N
0 T T T \o T T 0 T T T T T]
0 50 100 150 0 2 4 6

propagation delay (s) mean hop count

Fig. 3. Effect of network density on confirmation delay relative to round-trip
time (RTT) vs. propagation delay and hop count.

analyzed the success rates of command and confirmation
reception. For the former, we calculated the percentage of
received command messages (regardless of their destination)
per node. In all experiments, the average value (over all
nodes) ranges from 97% to 100%. The percentage of command
confirmations received at the sink is between 99% and 100%.

IV. CONCLUSION

Ultra-low power data collection protocols are vital to
achieve long operational times of WSNs. However, emitting
commands to reconfigure individual nodes is beyond the
capabilities of such protocols, making changes to individual
node configurations during runtime next to impossible. We
have thus introduced a lightweight extension to the ultra-low
power ORiNoCo protocol that allows the sink to route control
messages to deployed sensors nodes during the network’s
operation. Despite ORiNoCo’s opportunistic nature, testbed
experimentation has proven that command dissemination suc-
cess rates of 97-100% can be achieved. Moreover, the newly
designed protocol bears no additional overhead on regular
beacon transmissions and only a single field added to each data
packet, resulting in a very small additional energy requirement.

REFERENCES

[1] A. Woo, T. Tong, and D. Culler, “Taming the Underlying Challenges of
Reliable Multihop Routing in Sensor Networks,” in Proc. SenSys, 2003.

[2] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis, “Collection
Tree Protocol,” in Proc. SenSys, 2009.

[3] P. Levis, N. Patel, D. Culler, and S. Shenker, “Trickle: A Self-Regulating
Algorithm for Code Propagation and Maintenance in Wireless Sensor
Networks,” in Proc. NSDI, 2004.

[4] K. Lin and P. Levis, “Data Discovery and Dissemination with DIP,” in
Proc. IPSN, 2008.

[5] S. Unterschiitz, C. Renner, and V. Turau, “Opportunistic, Receiver-
Initiated Data-Collection Protocol,” in Proc. EWSN, 2012.

[6] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister,
R. Struik, J. Vasseur, and R. Alexander, “RPL: IPv6 Routing Protocol for
Low-Power and Lossy Networks,” RFC 6550, 2012.

[7]1 S. Duquennoy, O. Landsiedel, and T. Voigt, “Let the Tree Bloom: Scalable
Opportunistic Routing with ORPL,” in Proc. SenSys, 2013.

[8] G. Coulson, B. Porter, I. Chatzigiannakis, C. Koninis, S. Fischer, D. Pfis-
terer, D. Bimschas, T. Braun, P. Hurni, M. Anwander, G. Wagenknecht,
S. P. Fekete, A. Kroller, and T. Baumgartner, “Flexible Experimentation in
Wireless Sensor Networks,” Communications of the ACM, vol. 55, no. 1,
2012.

	Introduction
	Remote Node Reconfiguration in ORiNoCo
	Required Additional Fields
	Modified and New Message Types
	Communication Flow

	Evaluation
	Testbed Evaluation Setup
	Evaluation Results

	Conclusion

