Christian Renner and Phu Anh Tuan Nguyen. Lossless Compression of Cloud-Cover Forecasts for Low-Overhead Distribution in Solar-
Harvesting Sensor Networks. In Proceedings of the 2nd International Workshop on Energy Neutral Sensing Systems, ENSsys’14,
Memphis, TN, USA, November 2014.

Lossless Compression of Cloud-Cover Forecasts for
Low-Overhead Distribution in Solar-Harvesting Sensor Networks

Christian Renner
Institute of Computer Science
Universitat zu Libeck

renner@iti.uni-luebeck.de

Abstract

Combining local harvest patterns and global weather fore-
casts, e.g., cloud-cover forecasts, makes solar harvest predic-
tions and online duty cycle adaptation more reliable. For this
purpose, an energy and bandwidth efficient network-wide
distribution of those forecasts is required. To meet this end,
we propose compression methods for cloud-cover forecasts,
so that they can be piggy-backed on regular network pack-
ets. We evaluate compression performance based on data
collected from an online weather service for more than 14
months. We find that (i) cloud-cover forecasts can be com-
pressed by up to 76%, (ii) fit into an average of 5B for a
one-day and 21 B for a seven-day forecast horizon, so that
(iii) network-wide distribution leveraging, e.g., software ac-
knowledgments used by prominent low-power data collec-
tion algorithms is achievable.

1 Introduction

Energy-harvesting is a key enabling technology for sus-
tained, autarkic, reliable, and maintenance-free sensor net-
works. Especially in outdoor sensing scenarios, solar power
is an abundant resource and has hence been used for sev-
eral energy-harvesting sensor nodes [11, 3, 9]. However, the
amount of harvested energy—the harvest—is limited, since
solar panels must usually meet the tiny dimensions of sensor
nodes to maintain non-intrusiveness and low cost. There-
fore, sensor nodes still rely on, e.g., energy-efficient medium
access and routing protocols. To set up these protocols—
mainly in terms of configuring their duty cycle—the harvest
has to be well known. Unfortunately, the electric power pro-
duced by a solar cell cannot be predicted precisely prior to
network deployment. The reasons for this can be divided
into two categories:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions @acm.org.

ENSsys’14, November 6, 2014, Memphis, TN, USA

Copyright is held by the owner/author(s). Publication rights licensed to ACM. ACM
978-1-4503-3189-0/14/11...$15.00

http://dx.doi.org/10.1145/2675683.2675686

Phu Anh Tuan Nguyen
Institute of Computer Science
Universitat zu Libeck

nguyenp@informatik.uni-luebeck.de

1. Each node has a specific harvest pattern that is influ-
enced primarily by its positioning and environment. For
example, shades of buildings and trees reduce the actual
harvest of a node. Their influence varies throughout the
year due to, e.g., solar altitude and foliation. Hardware
aging and dirt deposits may also change the harvest pat-
tern temporarily.

2. Weather conditions and seasonal effects impact the ac-
tual harvest. The usefulness of statistical information
based on weather records is limited, because it only pro-
vides an uncertain picture of the future weather. Hence,
pessimistic assumptions about the future harvest must

be used to prevent node depletion.
In recent efforts, researchers have concentrated on cap-

turing the harvest pattern via online algorithms [1, 12, 16].
These algorithms exploit the fact that solar irradiance gener-
ally follows a diurnal pattern, which they try to learn online
and use them to predict the future harvest. However, predic-
tions are only based on locally available node data—e.g., a
node compares the beginning of a day with a set of learned
harvest patterns to select the most likely future course of har-
vest in this day. Regardless of the actual harvest prediction
algorithm, its results are used to adjust the duty cycle of sen-
sor nodes at runtime as in, e.g., [10, 6].

These approaches share in common that they are likely
to fail—i.e., produce massively wrong harvest predictions—
in changing weather conditions with the worst-case result of
unexpected node depletion. Prediction algorithms combin-
ing local harvest patterns and global weather forecasts are
hence required. In our previous work [14] we have shown
that using cloud-cover forecasts improves harvest predic-
tions. However, distribution of the weather forecasts into the
network is a mandatory yet unmet prerequisite for adopting
our prediction algorithm in real-world networks.

In this paper, we close this gap by proposing and evaluat-
ing lossless compression methods for cloud-cover forecasts,
so that they can be distributed efficiently—i.e., by consum-
ing low bandwidth and by causing a small energy expendi-
ture only. Since the distribution of cloud-cover forecasts is
generally delay-tolerant in the range of minutes (forecasts
usually have a prediction horizon of hours our even days), we
aim at sending cloud-cover forecasts piggy-backed on regu-
lar network packets. In particular, we envision network-wide
distribution by leveraging software acknowledgments used
in duty-cycled, low-power routing protocols. Hence, no ex-

(© held by the authors, 2014. This is the authors’ version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was
published in Proceedings of the 2nd International Workshop on Energy Neutral Sensing Systems, http://dx.doi.org/10.1145/2675683.2675686.

http://dx.doi.org/10.1145/2675683.2675686

tra network protocol is required for forecast distribution.

2 Lossless Cloud-Cover Forecast Compres-
sion

Cloud cover is a metric to describe the relative cloudiness
of the sky, in eighths. Forecasts are available through sev-
eral online weather portals. They are usually updated once
every hour, have a time resolution of one hour, and a fore-
cast horizon of several days. Since cloud cover already is
a rather coarse metric and the effect of precision loss for
harvest forecasts has not been explored, we concentrate on
lossless compression in the following.

The nine distinct cloud-cover values can be easily en-
coded as a 4-bit integer. Overall message length scales lin-
early with the time resolution of the forecast and the forecast
horizon. When distributing a typical forecast with a hori-
zon of only 24 h naively in the network, this gives an over-
all length of 24 - 4bit = 96bit = 12B. This already implies
a notable but likely tolerable overhead when piggy-backing
this data on normal data packets or acknowledgments. For
example, software acknowledgments (beacons) used by the
TinyOS-implementation of ORiNoCo [18] have a length of
17B. Although cloud-cover forecasts will be attached to a
fraction of beacons only, these few beacons may suffer from
a higher packet loss probability. Moreover, providing fore-
casts longer than a day is only possible at an even increased
packet loss rate or a reduced time resolution (to maintain
forecast data size).

Therefore, we have investigated methods to compress
cloud-cover forecasts so as to reduce the bandwidth and en-
ergy expenditure caused by network-wide forecast distribu-
tion. In the following, we present a brief analysis of the
characteristics of a cloud-cover forecast trace recorded from
an online weather forecast portal; based on the presented
findings, we subsequently present light-weight compression
methods. We present an evaluation of the achievable com-
pression performance in Sect. 3.

2.1 Characteristics of Cloud-Cover Forecasts

As a first step towards compressing cloud-cover forecasts,
we analyzed their characteristics and statistical properties in
order to choose promising compression methods. Figure 1
shows two example cloud-cover forecasts for the same place
but on different days. Despite the presence of 72 individual
forecast values each, adjacent forecast values change infre-
quently, i.e., there are only 12 and 16 value changes in the
example forecasts, respectively. Moreover, values change by
only *+1 in these examples.

A statistical analysis of more than 10590 forecasts that
we collected for more than 430 days revealed a more de-
tailed and dependable picture (c.f. Sect. 3.1 for more details
about the data trace). In particular, we found that cloud-cover
values are distributed unevenly as shown in Fig. 2a. This
means that a coding based on value frequency, such as Huff-
man coding, is a promising approach. In addition, we ob-
served that more than 82% of all adjacent cloud-cover values
are equal; and 99% of all forecast values have a difference
(which we will call delta in the following) of an absolute
value no more than 1. This is documented in Fig. 2b. The
entropy of cloud-cover values is 3.17 as opposed to only 0.87

cloud cover (eighth)

T T T T T T T T T 1T
0 6 12 18 24 30 36 42 48 54 60 66 72

time (h)

Figure 1. Two example cloud-cover forecasts with a reso-
lution of one hour and a horizon of three days.

30 100
— 1 ~ 80
T 20 > 60 |
g | g
2 4 S 40 |
g 10 g |
=] B fi=) 20 |

0 0

01234567 —-3-2-101 2 3

cloud cover (eighth) cloud cover (eighth)

(a) absolute values (b) deltas between adjacent values
Figure 2. Distribution of absolute cloud-cover values
and absolute changes between adjacent cloud-cover val-
ues within a forecast.

for the deltas of adjacent slots. Therefore, using a compres-
sion method based on value deltas is more appealing than
encoding the absolute values.

While it may appear tempting to investigate the actual
change of subsequent forecasts and only transmit differen-
tial forecasts, we do not follow this approach for the sake of
distribution simplicity. Such an approach would introduce
problems if, e.g., a sensor node runs out of energy or misses a
forecast. In this case, any differential forecast would be use-
less for that node. Therefore, recovery mechanisms would
be required to enforce the distribution of a complete, non-
differential forecast. To avoid this, we only consider the dis-
tribution of complete forecasts.

2.2 Compression Methods

The previous results motivate the compression of cloud-
cover forecasts to decrease the size of the forecasts and
thus reduce the overhead when sending them piggy-backed
on data packets or software acknowledgments. In addi-
tion to a high compression ratio, the decoding step should
be light-weight enough for contemporary sensor node hard-
ware, since every node in the network has to perform this
step after reception of a new forecast, whereas encoding may
be performed on a server connected to the sink node. The
implementation of the decoder should hence have proper-
ties such as a small memory footprint and a fast computation
time. In the following, we present three such methods.

2.2.1 Delta Coding (DC)

Since cloud cover within a forecast changes slowly, a
Huffman coding of the deltas between adjacent values within
a forecast is a promising approach. For this purpose, we as-

Table 1. (Selected) Codes for Delta Coding

delta frequency (%) code code length
-2 0.23... 1110 4
-1 8.31... 110 3
0 82.67... 0 1
1 8.49... 10 2
5

2 0.22... 11110

Table 2. Codes for Partial Delta Coding

delta frequency (%) code code length
-1 8.31... 110 3
0 82.67... 0 1
1 8.49... 10 2

else 0.53... 111xxxX 7

signed codes to all possible deltas from -8 to 8 (eighth) based
on their frequency. Table 1 gives an overview of the corre-
sponding frequencies and codes. Since delta coding requires
knowledge about the first value, we transmit the latter with a
4-bit integer encoding for the nine possible values. Note that
using an implicit value (e.g., the value 5, which occurs with
highest frequency as indicated above) would be possible, but
we found that the savings are marginal. Not considering the
first absolute forecast value, the expected average code size
per forecast value is 1.27 bit for this coding.

While the implementation of the encoder is straight for-
ward, decoding generally requires some effort. The latter
may, e.g., be implemented using a tree structure for the used
codes, where leaf nodes contain the corresponding delta val-
ues. In this concrete instance, codes may be chosen in a way
that they are defined by a series of 1’s followed by a single
trailing 0. While this simplifies decoding considerably (to
counting the number of consecutive 1’s before a zero), codes
have a length of up to 17 bit. Although the frequency of such
codes is rare, they will increase data size by 4 bit w.r.t. to
our current implementation. We hence did not opt for this
approach.

2.2.2 Partial Delta Coding (PDC)

Decoding complexity of the previously introduced delta
encoding is considerably higher than a simple integer encod-
ing of the deltas. Moreover, codes consume up to 13 bit. For
these reasons, we devised a partial delta coding that consists
of four different codes only, that have a maximum length of
8 bit, and that can be decoded efficiently. Table 2 gives an
overview of the corresponding frequencies and codes. The
first three codes are used for delta changes of -1, 0, and 1;
the fourth is used for any other delta and contains an abso-
lute forecast value encoded as 4-bit integer. As with DC,
the first cloud-cover value of the forecast is encoded as a 4-
bit integer. Not considering this value, the expected average
code size per forecast value is 1.28 bit.

The corresponding decoder can be implemented very ef-
ficiently. After reading the first absolute 4-bit value, the de-
coder has to count the number of consecutive 1’s before a 0
is read or until a maximum of three consecutive 1’s has been
received. In the former case (a O is read), the delta can be

1: procedure DECODEDDC(N, sunrise, sunset)

2 isDay < sunrise > sunset;

3 fori<0,...,N—1do

4 if i = sunrise then

5: isDay < true;

6: sunrise «— sunrise + 24; { next sunrise in 24 hours }
7 else if i = sunset then

8 isDay < false;

9: sunrise <— sunset + 24; { next sunset in 24 hours }

10: if isDay then

11: forecast[i] = decodeNextValue(); { daytime }

12: else

13: forecast[i] = DEFAULT_NIGHT_VALUE; { nighttime }

Figure 3. Decoding algorithm for a DDC-encoded cloud-
cover forecast with a horizon of N values (hours).

directly determined from the number of 1’s. If three con-
secutive 1’s were received, a 4-bit-encoded absolute forecast
value follows.

2.2.3 Daytime Delta Coding (DDC)

The previous two codings disregard the fact that, over a
period of a complete year, approximately half of the forecast
values are obsolete, since they forecast cloud cover during
nighttime when no solar energy is harvested. To cope with
this particular characteristic, we devised another encoding
that does not transmit these obsolete values.

We realized this by adding information about sunrise and
sunset while omitting all forecast values that fall into night-
time. With this information, a node can correctly decode the
received forecast. We implemented this practically by at-
taching the offset (in hours) of sunrise and sunset from the
time of forecast creation to the (compressed) forecast. Both
values fit in a 5-bit integer and hence counter the saving due
to value omission by a fixed 10 bit. The remaining encoding
is equal to PDC (with the exception that deltas during night-
time are omitted). Note that the first slot after the night may
be encoded as a delta of -1, 0, or 1, if applicable, or as a
prefixed absolute value as described for PDC.

Decoding is similar to that of PDC, but the decoder must
keep track of the beginning (sunrise) and end (sunset) of day-
time. In particular, the decoder has to check whether it is cur-
rently day or night (it can do this by checking if sunrise or
sunset is smaller, i.e., closer to the currently evaluated time
in the future). Figure 3 shows a pseudocode algorithm for
decoding DDC-encoded forecasts.

3 Evaluation

In the following, we evaluate the compression perfor-
mance of the methods proposed in Sect. 2.2. First, we in-
troduce the evaluation setup and metrics, before we present
the results. We conclude the section with a discussion of the
results and their limitations.

3.1 Setup and Metrics

To evaluate compression performance, we recorded
cloud-cover forecasts for the location of our university from
an online weather forecast service! from April 2013 to July
2014 with a gap of 4 weeks in November 2013 due to hard-
ware failure. Updated forecasts were available once every

1http://www2.wetterspiegel.de

http://www2.wetterspiegel.de

hour. They have an hourly resolution and a forecast horizon
of up to 10 days. Although a few forecasts were not available
or incomplete, we were able to reconstruct approximations
from previous forecasts. In total, the evaluation data set has
a size of 10590 individual cloud-cover forecasts.

From these data, we created hourly cloud-cover fore-
casts with forecast horizons ranging from one to seven days.
We compressed these with the methods from Sect. 2.2 and
recorded the size of the encoded data in bits and bytes
(rounded to the next larger number of bytes). We assume
that forecasts that are distributed in the network have a con-
stant horizon, so that no extra length information field (for
the forecast itself) has to be sent alongside the forecast. For
DDC, these sizes also contain the static offset required to en-
code sunrise and sunset. Unfortunately, we did not record the
required times of sunrise and sunset together with the cloud-
cover forecasts. However, these times were calculated using
the so-called sunrise equation”.

3.2 Results
3.2.1 Compression Performance and Comparison

First, we studied the absolute size and distribution of com-
pressed cloud-cover forecasts to assess the general feasibility
of transmitting them piggy-backed on regular data packets or
software acknowledgments. Figure 4 shows the results for
the three different methods and various forecast horizons.
The results exhibit an expected linear increase of encoded
data size for all methods.

The comparison between DC in Fig. 4a and PDC in
Fig. 4b indicates that both methods achieve an almost equal
compression performance. Only in a few instances, i.e.,
when cloud-cover forecasts change by more than one eighth
between adjacent values, PDC requires up to two extra bytes.
On average, both methods achieve savings over uncom-
pressed data of 58%, 63%, and 66% for forecast horizons
of 1, 3, and 7d, respectively. Compared to an optimal en-
tropy encoding of absolute cloud-cover values, these figures
remain at 44%, 48%, and 51%.

For a forecast horizon of only a single day, DDC in Fig. 4c
performs comparable to DC and PDC. With an increasing
forecast horizon, however, DDC achieves a higher compres-
sion. For example, the median for a three-day horizon using
DDC is 10B vs. 13B for (P)DC. The advantage increases
to 7B (which equals a 25% saving) for a seven-day horizon.
On average, DDC achieves savings over uncompressed data
of 60%, 72%, and 76% for forecast horizons of 1, 3, and
7 d, respectively. Compared to an optimal entropy encoding
of absolute forecast values, these figures are 47%, 60%, and
66%, respectively.

3.2.2 Optimality Study

Second, we compared the average compression results of
our methods with an optimal entropy encoder based on delta
values. For this purpose, we calculated the entropy of the
delta values, which gives a lower bound for the average num-
ber of bits needed to encode a single delta value. As for all
presented compression methods, we assumed that encoded
delta values are preceded by a single absolute value encoded
as four-bit integer. Hence, the overall average code length

2http://lexikon.astronomie.info/zeitgleichung/

Table 3. Average Number of Bits per Forecast Value

horizon (d) avg. compression code length (bit/value)

optimal DC PDC DDC
1 1.00 1.50 1.51 1.43
2 0.94 141 142 1.14
3 0.92 137 1.38 1.04
4 0.91 135 136 0.99
5 0.90 134 135 0.95
6 0.90 132 1.33 0.93
7 0.89 1.31 132 0.91

decreases with an increased forecast horizon, since the im-
pact of this static size offset is reduced.

Table 3 displays the average code length per forecast
value in bits for forecast horizons from 1 to 7 d. It shows that
optimal average code lengths are at most 1 bit per forecast
value, which cannot be achieved with a real entropy encoder,
since the minimum bit length of each forecast value is 1 bit
already. In fact, DC causes an overhead of 47-50% w.r.t. an
optimal entropy encoding. This overhead equals the aver-
age bit length of DC codes when considering the size offset
caused by the first (non-delta) value (c.f. Sect. 2.2). Since
PDC is a slight modification of DC only, the numbers are
similar. In contrast, DDC approaches the compression per-
formance of an optimal entropy encoder. This is achieved
through omitting unnecessary values at nighttime combined
with entropy coding of delta values.

3.2.3 Seasonal Daytime Influence

Finally, we compared compression performance of PDC
and DDC in more detail by studying the development of
compressed data sizes over time, i.e., depending on the
seasons. The expected result is that DDC performs best
in the winter, when days are short (and nights long), and
worst in summer, when days are long (and nights short).
However, it is uncertain if it is desirable to implement a
hybrid-compression method that may choose for each fore-
cast among PDC and DDC—for simplicity we assume that
there is always room for another single bit to mark whether
PDC or DDC was used for encoding. We hence want to an-
swer the question if and when such a solution is favorable
over a single method.

Therefore, we compared all individual compression re-
sults of PDC and DDC and analyzed the savings of DDC
over PDC. Selected results are displayed in Figs. 5a and 5b.
The general trend of the results confirms that during periods
with more daylight (late spring, summer, early fall) DDC
performs better than during darker periods of the year. How-
ever, the forecast horizon decides whether a hybrid solution
is worthwhile. For a horizon of one day, PDC outperforms
DDC from May to early August (negative savings of DDC
over PDC in Fig. 5a). In the remainder of the year, DDC is
the better choice. In contrast, when the forecast horizon is at
least three days, as shown in Fig. 5b, DDC never produces
compression results inferior to PDC. We can hence conclude
that for a forecast horizon of up to two days, it would be fa-
vorable to apply both methods and only distribute the smaller
result of the two in the network. However, this requires to
add an extra bit to enable the receiver to pick the right de-

http://lexikon.astronomie.info/zeitgleichung/

40 40 . 40
g 30 : g 30 o g 30
L = N = B
on x on H x on
i=] x = x =
5 90 | ;% 5 90 | . % 5 20 |
3 B * 5] x < .
g 10 §§ g 10 §§ g 10 %%
0 T T T T T T T 0 T T T T T T T O T T T T T T T
1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

forecast horizon (d)

(a) DC

forecast horizon (d)

(b) PDC

forecast horizon (d)

(c) DDC

Figure 4. Comparison of compressed data sizes for the three compression methods and different forecast horizons with
an hourly forecast resolution. The boxplots indicate the median (red line), upper and lower quartiles (box), and outliers
(marks). Note that uncompressed forecasts require 12 B for every forecasted day.

50

saving (%)
o

—50

T T
Apr May Jun

T T T T T T T T T T T
Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul

time of year

(a) 1-day cloud-cover forecast horizon

saving (%)

—-50

T T T T T T T T T T T T T T T
Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul
time of year

(b) 3-day cloud-cover forecast horizon

Figure 5. Compression improvement of DDC over PDC for different forecast horizons. Negative values indicate a larger

size of DDC-compressed forecasts.

coder and will increase firmware size slightly, since two de-
coding methods are required.

3.3 Discussion and Limitations

Our evaluation has shown that cloud-cover forecasts can
be compressed with savings of up to 76%. On average, the
daytime delta coding (DDC) achieves best results while it
can be implemented very efficiently. Forecasts of up to 3d
consume at most 17 byte, which allows piggy-backing them
on regular data packets or software acknowledgments. A
non-compressed forecast with equal horizon already requires
an intolerable 36 byte. Increasing forecast horizons is likely
to improve adaptive load adaptation algorithms w.r.t. making
a more efficient use of harvested energy while avoiding ac-
cidental node depletion. However, we consider even longer-
term forecasts as being too large for piggy-backing in most
cases—e.g. a 7d forecast requires up to 31 B, which equals
one fourth of the maximum payload of many packet-based
low-power radios.

Although our evaluation data is limited geographically to
central Europe, we are confident that our results are valid for
a wide range of possible deployments with a similar distri-

bution of day lengths over the year. In regions where day
lengths tend to vary less, PDC will be the better option for
short-term forecasts, whereas an even wider variation of day
lengths will profit from an hybrid compression as discussed
in Sect. 3.2.

In this paper, we did not consider compression by means
of reducing the time resolution of cloud-cover forecasts, be-
cause the impact of a resolution reduction on harvest forecast
precision has not been fully explored. In particular, it is not
known if reducing time resolution requires an increased reso-
lution of cloud-cover values—e.g., reducing time resolution
by a factor of 2 generally requires increasing cloud-cover
resolution by a factor of 2; hence requiring longer codes.

4 Related Work

Power management for energy-harvesting sensor net-
works enables sensor nodes to prevent depletion [15] and
to maximize the utility of harvested energy [10, 6]. Perfor-
mance evaluation of energy-harvesting hardware platforms
and algorithms has been enabled through the GreenCastalia
simulator [2]. Due to the unsteady energy production of (so-
lar) harvesters, several researchers have investigated and pro-

posed methods for future harvest prediction based on local
knowledge. Such methods are usually based on time slots
as in [1, 12] or pattern creation and recognition as proposed
by Spenza et al. [16]. Only recently, we have shown the
advantage of exploiting global weather information, such as
cloud-cover forecasts, in [14].

Such global weather forecasts must be distributed in the
network. For this purpose, data dissemination protocols,
such as Trickle [8] and CodeDrip [4], have been devel-
oped. However, they rarely make use of low-power, duty-
cycled MAC protocols and hence increase energy consump-
tion. Another option is to perform distribution by means of
piggy-backing forecasts on, e.g., software acknowledgments
used by low-power data collection protocols, such as [7, 18].

However, this requires data compression to limit the size
overhead of these acknowledgments. Reinhardt et al. pre-
sented an adaptive Huffman coding approach for sensor net-
works in [13], where they concentrate on limiting tree size
and the required bandwidth to distribute updated Huffman
trees due to code adaptations. Tsiftes et al. proposed a com-
pression method for bulk data, particularly firmware updates,
in [17]. A method for compressive sensing using a basis
transformation to reduce the entropy of sampled data is pre-
sented in [5]. We anticipate a low compression gain only,
if any, when applying these methods to cloud-cover fore-
casts, for the latter can be highly compressed by exploiting
day/night times and the low fluctuation of consecutive values
(c.f. Sect. 3). Furthermore, the previously mentioned meth-
ods come at a higher implementation and networking cost.

S Conclusion

Due to infrequent changes of adjacent cloud-cover val-
ues within a single forecast and unneeded nighttime values,
cloud-cover forecasts offer a high compression potential. By
exploiting these properties consequently, we were able to
compress those forecasts by up to 76%. Even multi-day
forecasts only consume a handful of bytes—e.g., a three-day
forecast requires 8 to 11 B in 50% of all cases and a maxi-
mum of 17 B. As aresult, it is possible to piggy-back cloud-
cover forecasts on existing data packets or software acknowl-
edgments of low-power, duty-cycled data collection proto-
cols. Therefore, no extra, complex data distribution proto-
col is required, hence saving computation power, radio us-
age, bandwidth, and, most importantly, energy expenditure.
Moreover, we have shown that decoding can be implemented
efficiently in a few lines of code.

Motivated by these results, we are currently integrating
a mechanism for network-wide distribution of compressed
cloud-cover forecasts in the ORiNoCo data collection pro-
tocol. We will evaluate distribution reliability, latency, and
overhead in a follow-up work.

6 References

[1] M. Ali, B. Al-Hashimi, J. Recas Piorno, and D. Atienza. Evaluation
and Design Exploration of Solar Harvested-Energy Prediction Algo-

(2]

[3]

(4]

[3]

(6]

(71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

rithm. In Proc. Conf. on Design, Automation and Test in Europe,
DATE, Mar. 2010.

D. Benedetti, C. Petrioli, and D. Spenza. GreenCastalia: an Energy-
Harvesting-Enabled Framework for the Castalia Simulator. In Proc.
Ist Intl. Wksp. on Energy Neutral Sensing Systems, ENSSys’13,
Rome, Italy, Nov. 2013.

D. Brunelli, C. Moser, L. Thiele, and L. Benini. Design of a Solar-
Harvesting Circuit for Batteryless Embedded Systems. [EEE Trans-
actions on Circuits and Systems I (TCAS-1): Regular Papers, 56(11),
Nov. 2009.

N. dos Santos Ribeiro Junior, M. A. M. Vieira, L. F. M. Vieira, and
O. Gnawali. CodeDrip: Data Dissemination Protocol with Network
Coding for Wireless Sensor Networks. In Proc. European Conf. on
Wireless Sensor Networks, EWSN, Oxford, UK, Feb. 2013.

J. Hoglund, T. Voigt, B. Wei, W. Hu, and R. Karoumi. Compressive
Sensing for Bridge Damage Detection. In Proc. 5th Nordic Wksp.
on System and Network Optimization for Wireless, Are, Sweden, Apr.
2014.

J. Hsu, S. Zahedi, A. Kansal, M. Srivastava, and V. Raghunathan.
Adaptive Duty Cycling for Energy Harvesting Systems. In Proc. Intl.
Symp. on Low Power Electronics and Design, ISLPED, Oct. 2006.

O. Landsiedel, E. Ghadimi, S. Duquennoy, and M. Johansson. Low
Power, Low Delay: Opportunistic Routing meets Duty Cycling. In
Proc. ACM/IEEE Conf. on Information Processing in Sensor Net-
works, IPSN, Apr. 2012.

P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle: A Self-
Regulating Algorithm for Code Propagation and Maintenance in
Wireless Sensor Networks. In Proc. Symp. on Networked Systems De-
sign and Implementation, NSDI, Mar. 2004.

C. Lu, V. Raghunathan, and K. Roy. Efficient Design of Micro-Scale
Energy Harvesting Systems. Journal on Emerging and Selected Topics
in Circuits and Systems, 1(3), Sept. 2011.

C. Moser, L. Thiele, D. Brunelli, and L. Benini. Adaptive Power Man-
agement in Energy Harvesting Systems. In Proc. Conf. on Design,
Automation and Test in Europe, DATE, Apr. 2007.

V. Raghunathan, A. Kansal, J. Hsu, J. Friedman, and M. Srivastava.
Design Considerations for Solar Energy Harvesting Wireless Embed-
ded Systems. In Proc. ACM/IEEE Intl. Symp. on Information Process-
ing in Sensor Networks, IPSN, Apr. 2005.

J. Recas Piorno, C. Bergonzini, D. Atienza, and T. Simunic Rosing.
Prediction and Management in Energy Harvested Wireless Sensor
Nodes. In Proc. Intl. Conf. on Wireless Communications, Vehicular
Technology, Information Theory and Aerospace & Electronic Systems
Technology, VITAE, May 2009.

A. Reinhardt, D. Christin, M. Hollick, J. Schmitt, P. S. Mogre, and
R. Steinmetz. Trimming the Tree: Tailoring Adaptive Huffman Cod-
ing to Wireless Sensor Networks. In Proc. European Conf. on Wireless
Sensor Networks, EWSN, Feb. 2010.

C. Renner. Solar Harvest Prediction Supported by Cloud Cover Fore-
casts. In Proc. Ist Intl. Wksp. on Energy Neutral Sensing Systems,
ENSSys 13, Rome, Italy, Nov. 2013.

P. Sommer, B. Kusy, and R. Jurdak. Power Management for Long-
Term Sensing Applications with Energy Harvesting. In Proc. st Intl.
Wksp. on Energy Neutral Sensing Systems, ENSSys ’13, Rome, Italy,
Nov. 2013.

D. Spenza, C. Petrioli, and A. Cammarano. Pro-Energy: A Novel En-
ergy Prediction Model for Solar and Wind Energy-Harvesting Wire-
less Sensor Networks. In Proc. Intl. Conf. on Mobile Ad-Hoc and
Sensor Systems, MASS, Oct. 2012.

N. Tsiftes, A. Dunkels, and T. Voigt. Efficient Sensor Network Re-
programming through Compression of Executable Modules. In Proc.
IEEE Conf. on Sensor, Mesh and Ad Hoc Communications and Net-
works, SECON, June 2008.

S. Unterschiitz, C. Renner, and V. Turau. Opportunistic, Receiver-
Initiated Data-Collection Protocol. In Proc. European Conf. on Wire-
less Sensor Networks, EWSN, Feb. 2012.

	Introduction
	Lossless Cloud-Cover Forecast Compression
	Characteristics of Cloud-Cover Forecasts
	Compression Methods
	Delta Coding (DC)
	Partial Delta Coding (PDC)
	Daytime Delta Coding (DDC)

	Evaluation
	Setup and Metrics
	Results
	Compression Performance and Comparison
	Optimality Study
	Seasonal Daytime Influence

	Discussion and Limitations

	Related Work
	Conclusion
	References

