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ABSTRACT
Solar harvest prediction is used in energy-harvesting sensor net-
works to achieve perpetual node operation. Existing approaches
only exploit local knowledge and thus fail in unforeseeable, chang-
ing weather conditions. We investigate the benefit of incorporat-
ing global knowledge in terms of fractional sky cloudiness, so-
called cloud cover. We propose and evaluate two methods that
combine local information of a node’s harvest pattern with global
cloud cover forecasts. We evaluate their performance with solar
traces collected by three solar-harvesting sensor nodes and com-
pare the results with existing prediction algorithms. We find that
(i) harvest predictions using cloud cover forecasts improve over-
all prediction precision, (ii) prediction errors in changing weather
conditions are considerably reduced, and (iii) coarse-grained cloud
cover forecasts require low extra network traffic while sacrificing
little prediction precision.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems; G.3 [Probability and Statistics]: Time-Series Analysis

General Terms
Algorithms, Performance, Design, Measurement

1. INTRODUCTION
Energy-harvesting sensor networks enable perpetually operating sen-
sor networks. In particular, solar harvesting has drawn considerable
attention [12, 3, 8], since it is applicable in most outdoor deploy-
ments. The amount of harvested energy, also called harvest, is yet
limited, so that sensor nodes must still employ power-saving mech-
anisms such as radio duty cycling. Moreover, the harvest is un-
steady due to massive inter-day and intra-day fluctuation, seasonal
effects, dirt, and hardware aging. In addition, the environment has
a notable impact, e.g., shades of buildings and trees reduce the har-
vest considerably. For a network of tens or hundreds of nodes,
planning the dimensions of the solar cells and the duty cycle for
each node is noneconomical or even impossible.
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For this reason, algorithms have been devised that adjust the duty
cycle or task schedule of sensor nodes online to achieve energy-
neutral (i.e., depletion-safe) operation [5, 11, 4, 15]. Rather than
saving as much energy as possible, these algorithms aim at max-
imizing the energy-neutral node consumption in order to achieve
goals such as low network delay or high sensing rates. They rely on
methods to predict the future harvest [5, 13, 1, 2], preferably long-
term predictions of at least one day. Existing prediction algorithms
only exploit local historical observations of the harvest. Particu-
larly in changing weather conditions, when a cloudy day follows a
sunny day and vice versa, these methods fail and produce erroneous
predictions. In the worst case, they hazard energy-neutral, perpet-
ual operation with too optimistic predictions, and they waste energy
by causing full energy buffers with too pessimistic predictions.

Using global weather forecasts has the potential to elevate the pre-
cision of harvest predictions. Here, cloud cover is promising, be-
cause it exhibits a correlation with solar irradiance [14, 6, 10]. In
addition, cloud cover forecasts have a small data size—they usually
have a resolution of up to one hour and are provided as eights of
the sky being covered with clouds—so that they can be distributed
into the network within a single packet per hour. However, cloud
cover information cannot reflect the local harvest pattern, that is
created by the node’s environment, so that local observations are
still required. A combination is hence appealing.

In this paper, we propose methods for harvest prediction that in-
tegrate globally available cloud cover forecasts with local obser-
vations of a node’s individual harvest pattern. We evaluate the
methods and compare them with existing algorithms based on lo-
cal information only. For this purpose, we use solar traces of three
energy-harvesting sensor nodes and freely available cloud cover
forecasts from an online meteorological service. In addition, we an-
alyze the impact of the time resolution of the forecasts and discuss
methods to distribute cloud cover information into the network.

The remainder of the paper is organized as follows. In Sect. 2, we
introduce and discuss existing algorithms for harvest prediction in
sensor networks. We introduce and explain our methods that inte-
grate cloud cover forecasts in Sect. 3. Sect. 4 evaluates and com-
pares our methods with existing algorithms, and Sect. 5 concludes
the paper.

2. HARVEST PREDICTION FOR SENSOR
NETWORKS

Several researchers have tackled the problem of light-weight al-
gorithms for generating solar harvest predictions for sensor nodes.
Here, the main focus is on low computation power and local reck-
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Figure 1: Excerpt of a solar current trace (red / filled curve)
and mean harvest in slots (blue) for S = 12

oning, i.e., preventing data exchange and distribution of weather
forecasts. They share in common that they exploit the quasi-cyclic
pattern of the harvesting sources—e.g., the diurnal pattern of so-
lar energy—to make predictions. We give an overview of exist-
ing algorithms and discuss their suitability for creating the required
long-term predictions of at least one day.

2.1 Harvest Predictions with Time Slots
A day is divided into S time slots, where each slot is assigned a
slot value µd,s on day d. Most algorithms assume static time slots
of equal length, e.g., 12 slots with a length of 2 h each. In each
day d and time slot s, the mean value hd,s of the harvest—which
can be, e.g., the solar current or power—is calculated and assigned
to the corresponding slot value, i.e., µd,s = hd,s. Figure 1 shows
an example of the actual harvest and the mean values hd,s. The
fundament of all harvest prediction algorithms is to smooth the
values µd,s of the same slot s along subsequent days d. These
smoothed values, denoted µ̄d,s, are then used to predict future slot
values µ̂d,s. In the following, we explain different methods for av-
eraging slot values and deriving predictions.

EWMA: Exponentially Weighted Moving Average
In [5] Kansal et al. obtain smoothed slot values by applying an
EWMA filter:

µ̄d,s = α · µ̄d−1,s + (1 − α) · µd,s (0 < α < 1) . (1)

Their intention is to compensate daily fluctuation, seasonal effects,
and harvester aging. The averaged value µ̄d,s of a time slot s in
day d is used as harvest prediction for the same time slot s in the
next day d+ 1, i.e.,

µ̂d+1,s = µ̄d,s . (2)

The method is light-weight, because only S values have to be stored
and the arithmetic complexity is low. Theoretically, predictions
with a horizon of multiple days are possible. However, this comes
at the cost of achieving predictions with low precision as discussed
in [16, 1]. In particular, there is no mechanism to react to changing
weather conditions.

WCMA: Weather-Conditioned Moving Average
To solve the shortcomings of EWMA predictions w.r.t. changing
weather conditions, the authors of [13] proposed the WCMA pre-
diction algorithm. It differs in three aspects:

1. It averages slot values over the latest D past days with

µ̄d,s =
1

D
·
D−1∑
i=0

µd−i,s (D ≥ 1) . (3)

2. A scale factor θ describes the relation of averaged slot values
with those of the current day through

θ =

(
K−1∑
k=0

1

k + 1

)−1

·
K−1∑
k=0

1

k + 1
· µd,s−k

µ̄d,s−k
(4)

to compare the trend of the current day with the average.

3. The actual prediction of the time slot directly following slot s
is a weighted sum of the mean harvest of slot s and the scaled
average value of the following slot:

µ̂d,s+1 = (1 − β) · µd,s + β · θ · µ̄d−1,s+1 . (5)

Storage space is S · D slot values and computation cost is higher
than that of EWMA. WCMA is designed to predict the directly
following slot but can also be used to predict slot values other than
the directly following ones. For this case our previous work in [16]
suggests β = 1 due to a lack of correlation between the mean
values of non-adjacent slots.

WCMA-PDR: WCMA w. Phase Displacement Regulator
Bergonzini et al. have improved WCMA in [2]. They noted a pat-
tern of prediction errors that they call phase displacement. Their
algorithm tracks the prediction error in each slot with an EWMA
filter. A phase displacement value is calculated by comparing the
prediction errors of adjacent time slots and is added to the WCMA
prediction value. The evaluation in [2] shows an improvement
of prediction precision for predictions of the following slot only.
However, WCMA-PDR increases the memory and computation de-
mand compared to WCMA and introduces additional parameters.
Since the algorithm is particularly tailored for the case β < 1, we
do not consider WCMA-PDR for long-term predictions.

Pro-Energy
The algorithm in [19] identifies characteristic harvest patterns (slot
values) of typical days online—the authors name sunny, cloudy,
and rainy days as examples. Harvest predictions are generated by
picking the pattern that has the closest match within a given com-
parison window. The algorithm supports short-term and mid-term
predictions (few minutes up to several hours) and increases the pre-
diction precision compared to EWMA and WCMA. Long-term pre-
dictions (of a whole day) have not been evaluated by the authors. It
is also not clear how well the prediction algorithms works during
the night in absence of harvest, when patterns are equal.

2.2 Model-Based Harvest Prediction
Sharma et al. present a method for using global solar irradiance and
cloud cover forecasts to predict the future harvest in [17]. They use
a polynomial model for the relationship between time of a day and
solar power. To cope with seasonal effects, one parameter set is
generated for every month of the year. The authors suggest a linear
down-scaling of the anticipated maximum solar power by means of
the per cent cloud cover. The method does not handle influences
of, e.g., hardware aging and shades caused by buildings or trees.

Machine learning for predicting solar power was discussed in [18].
SunCast predicts sunlight conditions by finding the most similar



historical sunlight trace [9]. Unfortunately, these algorithms over-
shoot the resource demands offered by sensor nodes.

3. HARVEST PREDICTION WITH CLOUD
COVER

Existing harvest prediction algorithms for sensor nodes succeed in
identifying the average harvest pattern of a node. This is an impor-
tant feature due to the individual harvesting patterns as explained
in Sect. 1. In changing weather conditions, however, they fail due
to their restricted, local knowledge. Using global knowledge, such
as cloud cover forecasts, mitigates this weakness, but it does not in-
corporate a node’s individual harvest pattern. We hence argue that
combing both methods satisfies the need for incorporating both lo-
cal harvest patterns and global weather conditions into predictions.

In the following, we present methods that combine the advantages
of EWMA predictions with cloud cover forecasts. First, we explain
the relation between solar harvest (current or power), solar irradi-
ance, and cloud cover. Second, we present our prediction methods.
Third, we briefly discuss how to distribute cloud cover forecasts in
the network.

3.1 Linking Cloud Cover and Solar Harvest
The photovoltaic effect causes a solar cell to produce a current that
exhibits an almost linear dependency on solar irradiance R, if the
voltage of the solar cell stays reasonably below its maximum volt-
age. This relationship also holds for solar power and solar irradi-
ance, if the terminal voltage of the solar cell is constant.

Solar irradiance and cloud cover are also related [14, 6, 10]. In
specific, analytical models have been proposed that describe the
relation % between irradiance R0 at a clear sky and irradiance R at
a relative cloud cover C. Here, C is the fraction (usually in eighth)
of the sky that is covered with clouds, and % is a function of C with

R = R0 · %(C) (6)

Two well-studied models are those of Kimball and Laevastu [14, 6,
10]. Kimball proposes the linear model

%(C) = 1 − 0.71 · C , (7)

and Laevastu suggests using

%(C) = 1 − 0.6 · C3 . (8)

Other models are either variations of the presented ones or use addi-
tional information, such as the solar altitude at noon or the latitude
of the deployment. Comparative studies as in, e.g., [6] have shown
that these bring limited or no improvement over the methods of
Kimball and Laevastu.

3.2 Harvest Prediction
We aim at providing a light-weight algorithm—in terms of compu-
tation power, memory demand, and the number of parameters—for
harvest prediction using cloud cover forecasts. The general idea is
to calculate for each slot the possible harvest under a clear sky with
Eq. (6) and use it as slot value. To predict the future harvest, the
slot value is scaled using the cloud cover forecast.

We suggest two methods that we elaborate in the following. Both
methods are based on the EWMA algorithm and use the mean har-
vest hd,s, the mean relation %d,s in slot s of day d, and the cloud-

cover forecast %̂. While hd,s is locally computable by a sensor
node, the values of %d,s and %̂ have to be distributed in the network
(cf. Sect. 3.3). Note that %̂ embraces multiple values, one for each
slot in the prediction horizon.

3.2.1 Combined Method
This method applies Eq. (6) for each slot by calculating the quotient
of mean harvest and cloud cover and by using it as mean slot value

µd,s =
hd,s

%d,s
. (9)

The smoothed value µ̄d,s is calculated with an EWMA filter (cf.
Sect. 2.1). The future harvest is predicted using the smoothed value
and the cloud cover forecast. For slot s of day d + k (k > 0), the
predicted harvest is

µ̂d+k,s = µ̄d,s · %̂d+k,s . (10)

The memory footprint of this approach scales linearly with the
number of slots S. The effort of distributing cloud cover forecasts
in the network depends on its forecast horizon and time resolution,
i.e., the size of the forecast in bytes. Computation complexity is
that of EWMA filtering plus one additional division and multipli-
cation each.

3.2.2 Separate Method
The second method tracks the smoothed mean harvest and cloud
cover values separately. For each slot s, two smoothed slot values
µ̄h
d,s (for the harvest) and µ̄%

d,s (for cloud cover) are stored. They
are fed with the mean harvest µh

d,s = hd,s and the mean cloud
cover µ%

d,s = %d,s in slot s using EWMA filtering (with same filter
coefficient α).

The future harvest is predicted using these two smoothed values
and the cloud cover forecast. In particular, the prediction for slot s
of day d+ k (k > 0) is calculated through

µ̂h
d+k,s =

µ̄h
d,s

µ̄%
d,s

· %̂d+k,s . (11)

The memory footprint and computation complexity are twice that
of the combined method. The effort of distributing cloud cover
forecasts in the network is the same.

3.3 Distribution of Cloud Cover Data
Until now, we have assumed that each node has access to cloud
cover information—either in form of C or %—for the current time
slot and a cloud cover forecast. Apparently, this data is global in-
formation, that has to be distributed in the network. Naturally, this
distribution should lead to as low communication overhead as pos-
sible. One way to solve this problem is to use a distribution method
such as Trickle [7]. Another option is to piggy-back the corre-
sponding data in (software) acknowledgments. This is particularly
appealing, if there is regular data traffic in the network and since
cloud cover information and forecasts are usually only available in
an hourly resolution. We plan to investigate this point in detail in
future work.

4. EVALUATION
Next, we evaluate and compare harvest predictions with and with-
out cloud cover forecasts. Before presenting the results, we intro-
duce the data sets and evaluation methodology.
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(a) node A: indoor, shaded in the
morning
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(b) node C: outdoor, partly
shaded in late afternoon

Figure 2: Statistical distribution (minimum, lower quartile,
median, upper quartile, maximum) of the harvested solar cur-
rent (ground truth).

4.1 Data Sets
We deployed three energy-harvesting sensor nodes (A–C) on dif-
ferent window sills of our University building. Node A was placed
on the inside, whereas nodes B and C were on the outside. All
nodes were equipped with a miniature solar cell and a superca-
pacitor as energy buffer. The solar cell produces a maximum cur-
rent of 35 mA, where the current roughly depends on the radiation
(weather conditions) only. A shunt in the ground path of the charg-
ing circuit serves as solar current sensor. Further details on the
hardware are provided in [15].

All nodes sampled the solar current every 3 s and sent 5 min-averages
to the base station. We recorded solar current data from April 2013
until July (88 to 95 days of data per node). Figure 2 shows the sta-
tistical distributions of solar current for two nodes throughout the
experiment time (nodes B and C performed similarly).

For the same time period, we recorded cloud cover forecasts from
an online weather forecast service1. These forecasts have a res-
olution of one hour and a forecast horizon of ten days. Updated
forecasts were available at every full hour.

4.2 Methodology and Metrics
Load adaptation algorithms (e.g., [11]) usually require long-term
harvest forecasts to achieve stable node operation. We hence com-
pare the prediction precision of our cloud-cover enabled harvest
prediction algorithms from Sect. 3, EWMA and long-term WCMA
predictions as described in Sect. 2.1. The prediction horizon is one
day, where predictions are updated after every time slot. Initially,
all smoothed slot values µ̄d,s are zero. We performed an analysis
for S = 6, . . . , 48 slots and α from 0 to 1 in steps of 0.1. For
WCMA we use D = 3, 5, K = 3, and β = 1. This setup has
shown good performance in [16, 2, 1]. Predictions using cloud
cover were generated with the relationship functions % from Kim-
ball and Laevastu and averaged to meet the slot length. We added
a suffix to Kimball and Laevastu to differentiate between the com-
bined (“-1”, one slot value) and separate method (“-2”, two slot
values).

To analyze the deviation of the prediction from the real harvest
course (ground truth), we calculated the root-mean-square error
(RMSE) for every single prediction. This metric shows the devia-
tion within a day and is hence particularly relevant for small energy

1www.wetterspiegel.de
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Figure 3: Comparison of prediction error for two nodes
through mean normed RMSE for α = 0.7, D = 3.

buffers (e.g., supercapacitors), where intra-day deviation may lead
to depletion or a full buffer. To analyze the error at the end of a
prediction horizon—i.e., not considering intra-day deviation—we
calculated the mean error (ME) for every prediction. This metric
is more relevant for large energy buffers that are rarely operated at
extreme fill levels (e.g., rechargeable batteries).

Since there is one error value for each individual prediction, there
are S values per day of the solar traces. To allow for a setup phase,
we only consider predictions after the fifth day (this is the rise time
of an EWMA filter with α ≤ 0.8 to 67% of an asymptotic final
value). Both RMSE and ME values are normed by dividing them
through the overall mean harvest. Error magnitudes are thus di-
rectly compared to the harvest and the mean, energy-neutral con-
sumption of a node. We did not calculate relative errors on a daily
basis, because they are extremely large on days with low harvest
and a too large prediction and thus distort the results massively.

4.3 Results
4.3.1 Comparison of Prediction Precision

The analysis of the RMSE shows a benefit of using cloud cover
forecasts for harvest prediction. Using S = 12 or 24 gives a good
trade-off between precision and memory consumption in all cases.
Figure 3 portrays the mean normed RMSE for nodes A and C
for different numbers S of slots (results for node B are similar
to node C). Results for different values of α (and D) are similar,
where best values are achieved for 0.6 ≤ α ≤ 0.9 and D = 3.

The advantage of cloud-cover-enabled predictions ranges from 10−
20%. Kimball conversion performs slightly better than Laevastu
for our data set; the method of prediction (separate vs. combined)
has a minor impact on the RMSE only. WCMA performs worst be-
cause its scaling method fails for slots further in the future—e.g., a
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Figure 4: Distribution of normed mean absolute errors for
S = 24 and α = 0.7 (D = 3 for WCMA)

better harvest than usual at noon does not (necessarily) imply a bet-
ter harvest in the morning of the following day. The figure reveals
that node C profits earlier from increasing S, because its harvest
pattern is more wide-spread over the day (cf. Fig. 2). The narrow
harvest window of node A requires additional slots to improve the
time resolution of prediction.

The RMSE in Fig. 3 may appear unexpectedly high (it ranges from
1.1 to 2.3 times the average harvest). The concept of time slots
already produces a large normed RMSE between the actual traces
and their slot representation (cf. Fig. 1); e.g., the normed RMSE for
node A ranges from 0.81 (S = 48) to 1.43 (S = 6). For node C,
it ranges from 0.50 to 0.96. We omit a comparison of prediction
precision without the bias of time slots due to space constraints.

Next, we studied the distribution of the ME and found that all meth-
ods produce a relatively unbiased (close to zero) ME. However,
EWMA and WCMA produce larger ME values, since they cannot
adequately compensate for changing weather conditions. Figure 4
shows the cumulative distribution function (CDF) of absolute ME
values. Both plots exhibit a notable improvement of Kimball-1 over
EWMA and WCMA; e.g., 60% of all ME values of node A are at
most 0.37 for Kimball-1, 0.45 for EWMA, and 0.55 for WCMA.
The results for other values of S and α are comparable.

In addition to statistical metric evaluation, we investigated the tem-
poral course of prediction errors. Figure 5 shows harvest and pre-
diction ME for an excerpt of 21 d for node A. It shows that par-
ticularly upon changing weather conditions, Kimball-1 has an im-
proved precision (ME closer to zero) over EWMA. This is, e.g.,
visible on day 61 and the series of days starting with day 71, where
the weather conditions and thus harvest increase from day to day.
In some cases, e.g., day 69/70, erroneous cloud cover forecasts (not
shown in the figure) prevent an improvement. The figure also re-
veals that WCMA produces small errors particularly on days with
low harvest (e.g., days 61 and 62). However, it produces large er-
rors on days 76 and 79.

4.3.2 Influence of Cloud Cover Resolution
In the following, we explain the influence of the resolution of cloud
cover forecasts. For this purpose, we analyzed the mean normed
RMSE produced by Kimball-1 with resolutions ranging from 1 h to
24 h by averaging the Kimball-converted cloud cover values over
the corresponding time window (resolution). Note that only the
resolution of the forecast is altered. The values used in Eq. (9) still
have the resolution of the slot length.
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Figure 6: Influence of the temporal resolution of cloud cover
forecasts on the mean normed RMSE for Kimball-1 with
α = 0.7 for node C

Figure 6 depicts the results for node C and different values of S. For
a resolution of 1 h to 3 h the results stay virtually unchanged. Only
for lower resolutions the RMSE increases slightly; e.g., for S = 12,
the RMSE rises by less than 1%, if the resolution is changed from
1 h to 6 h and by less than 5% for a change to 24 h. Prediction
accuracy with a resolution of 24 h hence stays considerably below
those of EWMA and WCMA, cf. Fig. 3. As a result, the energy
expenditure due to distributing cloud cover forecasts in the network
can be reduced—with very little loss in prediction precision—by
reducing forecast resolution.

5. CONCLUSION
Existing harvest prediction algorithms for energy-harvesting sen-
sor nodes fail in changing weather conditions. We presented two
methods to incorporate global weather information, such as cloud
cover forecasts, to resolve this weakness. For each of these meth-
ods, we applied two different models to convert cloud cover into a
scaling factor for predicting the future harvest from historical, local
data. Our methods are applicable to direct and maximum-power-
point charging circuits, because they apply to both solar current and
power predictions.

Our evaluation shows that the overall prediction error is signifi-
cantly reduced by exploiting cloud cover information. The actual
method of using cloud cover information has a minor impact only.
More importantly, a detailed study of the prediction errors vs. real-
world solar traces proves that particularly in changing weather con-
ditions, the integration of cloud cover improves over existing ap-
proaches. The risk of depleting and wasting harvestable energy is
thus decreased. In addition, our analysis indicates that the time
resolution of cloud cover forecasts has a relatively low impact on
prediction precision. It is hence possible to keep the amount of net-
work traffic needed to distribute forecasts in the network at a low
level; e.g., cloud cover forecasts with a resolution of 12 h can be
distributed as piggy-backed information with link-level acknowl-
edgments once every 12 h.

We also identified future research directions. First, it would be in-
sightful to analyze further methods for cloud cover conversion and
different types of weather forecasts (e.g., sunshine duration). Sec-
ond, a field test with a real load adaptation algorithm—that, e.g.,
adapts the radio duty cycle of the nodes—would produce another
metric of the actual performance improvement, e.g., in terms of
network delay or throughput. Third, it appears promising to an-
alyze if the scaling used by the WCMA algorithm can be com-
bined with our cloud cover methods to compensate imprecise cloud
clover forecasts.
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