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Abstract

Forecasting the expected energy harvest enables small-sized energy-harvesting sensor nodes to schedule tasks or adapt the
radio duty cycle. This ability ensures depletion-safe and efficient operation. Most energy sources exhibit cyclic patterns
of intensity, e.g., the sun. These patterns show periods with unequal—low versus high and stable versus varying—energy
production and heavily depend on a node’s location as well as seasonal and environmental changes. Existing forecast
algorithms do not exploit these patterns, but create and update forecasts at static and arbitrary points in time, the
main knob being the number of updates per cycle. We present a method enabling sensor nodes to adapt to harvesting
patterns at runtime. It is designed for seamlessly replacing the static scheme to improve the accuracy of a wide range of
existing forecast algorithms. In our evaluation, we show that (i) the adaptive method traces the energy pattern in real-
world deployments accurately, (ii) reacts to seasonal and environmental changes, (iii) increases forecast accuracy, and
(iv) reduces the number of prediction updates. These achievements enhance depletion-safe operation and efficient task
scheduling with fewer recalculations and adjustments of the duty cycle. They also facilitate the exchange of harvesting
forecasts for collaborative node tasks, since less information has to be shared.
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1. Introduction

Energy-efficient operation of wireless sensor network
deployments has drawn considerable attention with em-
phasis on MAC [1] and routing protocols [2]. While this
approach can merely prolong a network’s lifetime, energy-
harvesting sensor nodes [3, 4, 5] can virtually guarantee
unlimited and uninterrupted operation. Among the re-
sulting benefits of such a platform are

• avoiding gaps in collection data, which may reduce
the expressiveness of measurements; and

• preventing manual intervention for battery replace-
ment.

The latter usually infers large costs or logistic problems,
particularly in harsh, difficult-to-reach, or large-scale se-
tups [6, 7]. It may also cause severe intrusion into and an
interference with the phenomena under investigation [8].
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Energy-harvesting sensor nodes make perpetually op-
erating and sustainable sensor networks possible. Yet,
achieving non-intrusive monitoring of phenomena requires
devices of tiny size. This demand is clearly opposed to
using components that guarantee a sufficient amount of
energy even under harsh conditions lasting for long peri-
ods of time [9].

Tiny components yet come at a non-negligible cost:
Harvesting potential—i.e, the amount of energy that can
be drawn from the environment—is decreased. The har-
vester has to comply with the average power demand of
the node’s hardware w.r.t. the running application and al-
gorithms. However, the actual extent of the harvest may
not be known precisely prior to deployment and is not ac-
counted for by global weather forecasts. The extent often
depends on the exact positioning of the harvester, since
local or seasonal effects dominate energy production—e.g.,
solar-powered nodes close to the sun-averted side of a build-
ing suffer from shadows. Aging effects, dirt, and envi-
ronmental changes reduce the potential of the harvester.
Hence, a sensor node must be able to adapt its power con-
sumption profile to these conditions. Important research
on this topic has already been carried out [10, 11, 12, 13,
14, 15, 16]. In conclusion, nodes have to adjust their sched-
ule to achieve energy-neutral operation [17], i.e., they must
not exceed the amount of harvested energy within a given
period of time. For periods of low or no harvest, a node
depends on the capacity of its energy-buffer. Supercaps
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have been frequently used, since they combine small size
and cheap prices while providing enough capacity to back
up a node’s operation for several days [18] and offer virtu-
ally unlimited charge cycles.

Employing a pattern of energy production for the har-
vester output with respect to the environment during run-
time improves the operation efficiency of sensor nodes and
their robustness against temporary energy depletion, e.g.:

• Throttling the radio duty cycle is unnecessary, if the
energy buffer is close to depletion, but energy can be
harvested in the near future

• Short periods of high harvesting potential can be
used for fast and high-volume data exchange or col-
lection, because there is no need for radio duty-cycling

• More stable routing paths can be established, if per-
spective energy harvest is integrated into path estab-
lishment

• Delay-tolerant tasks can be deferred and sampling
rates reduced, if residual energy and expected har-
vest are low

Therefore, prediction techniques (focusing on solar har-
vesters) have been introduced to wireless sensor nodes [19,
20, 21, 17] that exploit quasi-cyclic behavior of harvesters.
While these approaches improve energy-awareness with
respect to future energy resources, they have two major
drawbacks. Firstly, they incorporate many influencing fac-
tors and parameters with partly uncertain impact. A de-
tailed analysis on the individual influences has not been
carried out in detail. Secondly, the prediction schemes
rely on static update intervals of equal lengths. Times
of low dynamics thus get the same attention as do more
dynamic phases, although more concentrated attention on
the latter is required to efficiently update task schedules or
detect imminent threats of energy depletion—e.g., there is
no need to reassess the harvester output during night times
for a solar harvester. In contrast, short phases with high
harvester output but strong dynamical behavior among
cycles need prompt reassessment in order to react to over-
or underestimations. Non-equally distributed, but prede-
fined prediction points are no remedy, if the harvesters
deliver distinct and unusual patterns of energy—e.g., a
solar-harvesting node under a tree may harvest energy in
the morning and afternoon, but not at noon, when the tree
shades the harvester. In the winter however, when the tree
bears no leafs, harvesting is possible without interruption.

In this paper we address these issues and make the fol-
lowing contributions. Firstly, we define a theoretic foun-
dation for identifying the pattern of energy-harvester out-
put, enabling an improved timing for prediction and a
node’s task schedule adaptation. Secondly, we derive a
practical, adaptive algorithm with small memory-footprint
and low computational power achieving a considerable im-
provement over static time slot distributions. Thirdly, we

evaluate the accuracy of existing prediction algorithms us-
ing our new slotting scheme and present a detailed com-
parison. In this context, we also explore the influence of
individual parameters and discard those which have low
or no substantial influence on prediction accuracy. We fi-
nally give practical advice on tailoring harvester prediction
schemes to real-world applications and present considera-
tions about future research directions regarding more elab-
orate prediction schemes.

2. Overview

This section outlines the fundamentals of forecasting
the behavior of an energy harvester for sensor nodes. The
subsequent sections provide formal definitions of the con-
cepts.

2.1. Objective

Efficient utilization of available energy resources is man-
datory for tiny energy-harvesting sensor nodes. To meet
this end, the following situations must be avoided:

1. Empty energy buffer at times of low harvesting poten-
tial : A node cannot continue operation until energy
can be harvested again

2. Full energy buffer during times of high harvesting po-
tential : Additional energy produced by the harvester
cannot be stored and has to be consumed directly or
is lost otherwise

Knowing the performance pattern of its energy harvester, a
sensor node is enabled to avoid these situations by schedul-
ing its tasks appropriately. For example, a node can adjust
sensor sampling rates, adapt its radio duty cycle, or alter
the level of data aggregation for sent radio messages.

In the following, we define a set of assumptions for
forecasting the harvester performance. We sketch the ba-
sic idea of forecasting techniques and introduce our novel
approach.

2.2. Model Assumptions

To achieve a comprehensible explanation of our pattern-
detection scheme, we make the following assumptions:

1. Time is divided into equidistant, discrete time steps
t = 0, 1, 2, . . .

2. Harvester output—e.g., current or power—is sam-
pled at these time steps. The samples are denoted h[t]

3. Harvester output is cyclic with a cycle length of T
time steps. The term cyclic means that the auto-
correlation of the series h[.] has a strong local max-
imum at time T , so that forecasting future values is
feasible. The cycle length is inherent to the type of
harvester and is derived empirically, e.g., it is 24 h
for outdoor solar harvesters
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Figure 2: Solar harvester output on two sunny days in March (left)
and July (right), recorded by a sensor node placed on a window sill
facing westwards

Figure 1a depicts a schematic example of a harvester out-
put meeting these assumptions. Two different days (cy-
cles) of a real solar harvester are displayed in Fig. 2: A
sensor node samples the produced current of the solar cell
every 30 s. The two days exhibit the required correlation,
but there is a seasonal influence on harvester output.

2.3. General Approach

Our goal is to identify the pattern of harvester output
and create a forecast of the future performance of the har-
vester output at a time of prediction denoted t̂ utilizing a
memory of a cycle length T . The prediction horizon is of
length Z time steps, i.e., we want to forecast the unknown
future harvesting potentials h[t], t = t̂+1, t̂+2, . . . , t̂+Z.
An example forecast with prediction horizon of Z = 6 for
a harvester output with cycle T = 12 is shown in Fig. 1b.

This approach is memory-demanding, since it requires
storing the latest T past values h[t] while producing Z
new values. For a solar harvester with a sampling period
of 30 s (cf. Fig. 2), the cycle length is T =2 880. If samples
could be stored as 10 bit values (the resolution provided
by many sensor node ADCs), memory consumption for
a prediction horizon of a complete cycle (i.e., Z = T =
2 880) would be as large as 7.2 kB. Even modern sensor
nodes rarely offer more than 8 or 16 kB, leaving almost
no room for application memory. Reducing the sampling
rate—i.e., skipping samples—is not desired, as it decreases
the accuracy and reliability: Fig 2 shows a large sample
variation within short time.

Many approaches therefore divide a cycle into a con-
stant number of equally-sized slots [19, 14, 22]. We call
this a static slot distribution. Instead of storing all har-
vester samples, only the mean value of samples within a
slot is stored. For a slot length of, e.g., 30 min, cycles are
divided into 48 slots each embracing 60 samples. Mem-
ory consumption for a prediction horizon of one cycle, i.e.,
48 slots, is reduced to 96 B (for a realistic implementation
with 16 bit integers).

While this approach conserves memory, it reduces the
accuracy of the harvester output pattern and the forecast.
Available evaluation results of the various approaches sug-
gest that in many cases slot length correlates with predic-
tion error [20]. This implies that an increased representa-
tion error—i.e., the error induced by averaging samples—
leads to an increased forecasting error. Yet, increasing the

number of slots in a static distribution is inefficient: Fig. 2
reveals that many slots are virtually useless, because the
harvesting output is zero. In the example above, roughly
half of the slots are situated at times in which there is no
sunlight. If slots during those periods would be longer,
shorter slots could be used at times of high dynamics,
e.g., in the afternoon. For this purpose, we suggest using
variable-length slots. This implies that slots have differ-
ent lengths, which can also be changed (adapted) so as
to react to local conditions or seasonal changes. The un-
derlying idea is to effectively decrease the representation
error where it is particularly large, to achieve a reduced
forecasting error. Although slot lengths have to be stored,
they can be efficiently fitted into the remaining bits of
the variables used for storing the slots’ mean values: For
ADCs with a resolution of 10 bit, most programmers will
use 16 bit integers for storing each value, leaving 6 other-
wise unused bits for holding slot lengths.

We divide a cycle c into a series Sc of S slots, not
necessarily of equal length. The number of slots is con-
stant in all cycles, the reason being that (i) most sensor
node operating systems do not offer dynamic memory, and
(ii) leaving slots unused will decrease accuracy, implying
that using the maximum number of available slots would
be the result. A slot s has a start time τs and a length
of ls time steps, plus it maps a representative value µs to
all harvesting potentials embraced. This value could be
the mean value as in existing approaches. Sect. 3 provides
additional details. The lengths of slots are variable and
chosen so as to decrease the representation error w.r.t. an
error metric—e.g, the mean absolute error (MAE) or the
mean square error (MSE). This also reduces the forecast
error; forecasting techniques are discussed in Sect. 5.

The static and variable slotting techniques are shown
in Fig. 1c and 1d. Slot lengths in Fig. 1c have a (fixed)
length of 3 time steps, whereas slots have different lengths
in Fig. 1d. The representation error per cycle is notably
decreased. This is evident from the times t = 18, 19, 20.

3. Optimal Slot Distribution

In this section, we give a formal definition of the slot
distribution concept illustrated in Sect. 2. We also show
how to efficiently determine an optimal slot distribution
for a cycle with respect to a given error metric.

3.1. Time and Harvesting Potential

The series of harvesting potentials h[t] ∈ R+ sampled
in the interval represented by time step t ∈ N is defined as

H = 〈h[0], h[1], . . . 〉 (1)

The series H is cyclic with length T , and w.l.o.g. we
assume that the first cycle of the observation time starts
at t = 0. We can therefore uniquely decompose any global
time step t into a cycle number c ∈ N and a cycle time τ :

t = c · T + τ (0 ≤ τ < T ) . (2)
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(c) Harvester output represented by constant-length slots
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(d) Harvester output represented by variable-length slots

Figure 1: An example of cyclic harvester output with possible slot distributions and an example forecast

With this definition, we introduce two shortcut notations:

hc[τ ] = h[c · T + τ ] (0 ≤ τ < T ) (3)

Hc = 〈hc[0], . . . , hc[T − 1] 〉 (4)

3.2. Variable-Length Slot Distribution

Each series Hc is represented by a series Sc with a
constant number of S variable-length slots s ∈ Sc with
start time τs, length ls, and value µs that represents the
harvesting samples embraced. Slots are non-overlapping,
so that

∑
s∈Sc ls = T . The start time of a slot s hence

evaluates to
τs =

∑
r∈Sc,τr<τs

lr . (5)

From these definitions we derive the slot representation
series of cycle c

H̃c = 〈 h̃c[0], . . . , h̃c[T − 1] 〉 (6)

with its individual values

h̃c [τ ] = µs (s ∈ Sc, τ = τs, . . . , τs + ls − 1) (7)

Figure 1d serves as an illustration of these definitions. The
circles show the series Hc, while the horizontal bars track
H̃c (defined by the slot lengths and values).

3.3. Optimal Slot Distribution

The choice of the parameters µs and ls is subject to
minimizing the representation error of actual harvesting
potential Hc and slot representation H̃c. Given an error
metric fe—e.g., the absolute error fe(x, y) = |x− y| or the
squared error fe(x, y) = (x− y)2—we define the represen-
tation error of a single slot s in cycle c as

ec (s) =

∣∣∣∣∣
τs+ls−1∑
τ=τs

fe (hc[τ ], µs)

∣∣∣∣∣ (s ∈ Sc) . (8)

The representation error of a series of slots S with respect
to Hc is defined as

Ec (S) =
∑
s∈S

ec (s) (9)

The slot value µs yielding the minimum error of a single
slot s with given length ls is obtained by solving

dEc
dµs

=
dec(s)

dµs

!
= 0 . (10)

For the example of the squared error, the minimum error is
achieved by choosing µs to be the mean of the harvesting
samples embraced by slot s.

Slot lengths ls are chosen to minimize the error Ec
within a cycle c:

E∗c (S) = min
S
Ec (S) . (11)

Deriving (9) by the S parameters ls yields S equations.
The variables ls appear as parameters in the summation
of the corresponding slot and in the equation for µs. Due
to the summation constraint

∑
s∈Sc ls = T , slot lengths are

not independent. An analytical solution of the minimiza-
tion problem does therefore not exist in general—this is,
e.g., the case for the quadratic and absolute error metrics
(see above). The naive approach for finding the minimum
requires inspecting all admissible solutions. With the first
slot always starting at the beginning of a cycle and no slot
having zero length, this is equivalent to choosing S − 1
starting times from T − 1 possibilities. This gives a search
space of T −1 choose S−1, rendering this approach infea-
sible. Yet, the following observations lead to an efficient
solution algorithm using dynamic programming (DP).

If S′ slots have already been distributed until time τ ,
and if the representation error of this partial distribution
is minimal, the additional error of the slot distribution for
the remainder of the cycle with the available S−S′ slots is
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// Initialization

best(Smallest error with S′ slots at time τ);
prev(Predecessor for S′ slots at time τ);

best = (bτ,S′)
T×S , bτ,S′ =∞;

prev = (pτ,S′)
T×S , pτ,S′ = ∅;

for τ = 0, . . . , T − S do
best [τ, 0] = ec(slot from 0 to τ);
prev [τ, 0] = 0;

// DP over all times τ in cycle

for τ = 1, . . . , T − 1 do
// and all possible starting times τ∗

for τ∗ = 1, . . . , τ do
// get error once for any S′

err = ec(slot from τ∗ to τ);
// process possible number of used slots

for S′ = max(0, S−1−T+τ)), . . . , S−3+
⌊

τ
T−1

⌋
do

b = best [ t0-1,s ] + err;
if b ¡ best [τ , S’+1] then

best [τ , S’+1] = b;
prev (τ , S’+1] = τ∗ − 1 ;

// obtain slot lengths of best distribution

p = T − 1;
for S′ = S − 1,. . . ,0 do
lS′ = p − prev [p,S′];
p = prev [p,S′];

Algorithm 1: Dynamic Programming approach to
compute the optimal slot distribution for a single cy-
cle

independent from the former distribution. This follows di-
rectly from (8). For a given optimal slot distribution with
intermediate point τ , the induced slot representation S1
on [0, τ ] and S2 on [τ + 1, T − 1] are optimal. In contrast,
the number of slots consumed at intermediate time τ influ-
ences the additional error of the possible distributions on
[τ + 1, T − 1], e.g., a lower error at τ using one additional
slot may lead to a larger overall error.

Thus, we can perform dynamic programming over time τ
while considering for each τ the number S′ of already used
slots. The formal algorithm is displayed in Alg. 1 and has
an upper-bound complexity of S · T 2/2; yet, overall run-
time also depends on the complexity of computing ec. The
complexity can be further reduced by using lower and up-
per bounds for slot lengths. However, finding the optimal
slot distribution is only discussed for the comparison (see
Sect. 7) with the adaptive slotting scheme presented in the
following section.

4. Adaptive Slot Distribution

An optimal slot distribution as defined in Sect. 3 can
only be achieved with memory resources and computing
power beyond the scope of even modern wireless sensor
nodes. For the solar harvesting example in Sect. 2.3, the

DP requires roughly 2 880 · 1 440 · 48 ≈ 2 · 108 iterations
and a storage space of up to 2 880 · 48 values.

Thus arises the need for a resource-efficient algorithm
that improves, or adapts, the current slot distribution to
decrease the error. To preserve memory and computing
resources, we suggest a scheme based on local decisions—
i.e., making decisions based on the evaluation of a single
slot at a time—that has the additional advantage of de-
creasing the number of stored samples hc. In this section
we provide the relaxed problem statement, define opera-
tions for adapting an existing distribution and discuss their
practical application.

4.1. Problem Statement

Given the slot representation H̃c−1: At the end of the
following cycle c, an adapted representation H̃c has to be
determined that reduces the representation error w.r.t.Hc.
We thus seek to improve Sc−1 yielding the distribution Sc
with

Ec (Sc−1) > Ec (Sc) . (12)

This requirement is an relaxation of (11), since we are
no longer searching for the best possible slot distribution
for Hc. In contrast, the idea is to approach this distri-
bution by adapting H̃ cycle-wise. However, H̃ will not
converge to a static distribution, since Hc changes from
cycle to cycle; but H̃ will trace these changes and improve
forecasting accuracy. Note that changes between cycles
imply that the representation error of the new cycle may
be larger than in the previous one, even after the slot dis-
tribution has been adapted. This is particularly the case,
if Hc is largely different from Hc−1.

4.2. Operations for Adapting the Distribution

A fast and resource-efficient adaptation of an existing
slot distribution is obtained by two separate procedures:
splitting existing and merging adjacent slots.

4.2.1. Splitting Slots

Splitting a slot s ∈ Sc−1 into S′ slots ri with values µri

and lengths lri (0 ≤ i < S′) is performed with the ob-
jective of minimizing the representation error, i.e, finding
E∗c (〈 r0, . . . , rS′−1 〉) with the constraint lr0+ . . .+ lrS′−1

=
ls and τs = τr0 . We call this a S′-split operation. The
optimal solution for the splitting problem of a single slot
can be obtained by solving (10) with Alg. 1. The max-
imum reduction of the representation error of a S′-split
operation on slot s is

C∩(s, S′) = ec (s)− E∗c (〈 r0, . . . , rS′−1 〉) . (13)

4.2.2. Merging Slots

A subseries of adjacent slots S ′ ⊂ Sc−1 (|S ′| ≥ 2)
can be merged into a new single slot r with value µr and
length lr by adding the lengths ls (s ∈ S ′) and applying
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(10) to the merged slot r. We call this a S′-merge opera-
tion. Merging slots yields an representation error increase
of

C∪(S ′) = ec (r)− Ec (S ′) . (14)

4.3. Admissible Adaptations

An adaptation of a slot distribution with split and
merge operations must be admissible, i.e, condition (12)
must be satisfied and the number of slots has to be con-
stant (cf. Sect. 2.3). The memory footprint and computing
power for such an operation must be low for practical ex-
ecution on sensor nodes. We thus suggest the following
procedure:

1. Calculate C∪ (S ′) for all S ′ ⊂ Sc−1 for a constant
S′ = |S ′| and store the results

2. Calculate and store C∩ (s, S′) for all s ∈ Sc−1 for the
same constant S′ and store the results

3. While the minimum C∪ and maximum C∩ satisfy
the condition C∪ < C∩—i.e., (12) holds—perform
the corresponding split and merge operations, and
remove these C∪, C∩ pairs

It is possible to perform steps 1 and 2 with a range of S′

values. However, the storage requirement is 2S for each
value of S′, so that using more than one value for S′ may
not be feasible. Furthermore, such an approach requires to
expand step 3 to find the optimum among all possible com-
binations, e.g., it would be possible that the combination
of two 2-merge operations and only one 3-split operation
gives the best result.

4.4. Practical Adaptations

To keep computing and storage complexity at a low
level, the number of possible adaptation combinations has
to be small. Hence, we suggest to exclusively consider 2-
merge and 2-split operations. Early experiments showed
that this restriction has very low influence only. We also
reduce the number of stored values C∩ and C∪ to the B
best ones each, so that at most B split and merge op-
erations are performed after each cycle. The quality of
this approach is discussed in Sect. 7. Besides complexity,
there is another reason for such an approach: In many
applications (e.g., solar harvesting) the average harvesting
pattern of cycles changes slowly, so that adaptations of the
slot distribution become rare, once a good representation
is found. However, there may be outliers—e.g., a rainy
day in the summer—in which the representation could be
poor. If an adaptation scheme allows for massive changes
after each cycle, such an outlier may produce an adapted
slot distribution not suitable for the average case. This
problem is closely related to overfitting.

We also introduce minimum Lmin and maximum Lmax

slot lengths for two reasons. Defining a minimum slot
length has a practical cause: There may be energy intake
fluctuations within a cycle, that are not cyclic. Solar har-
vesters suffer from short phases of clouds within a day that

lead to significantly lower harvesting values. Since these
phases are not likely to occur exactly at the same time on
the following day, assigning a slot to these phases should
be prevented. Restricting the maximum length of slots
allows for storing slot lengths without additional storage
space (cf. Sect. 2.3).

To reduce the likelihood of high deviation of harvesting
values within a slot, we choose the squared error metric
fe(a, b) = (a− b)2, yielding

µs =
1

ls

τs+ls−1∑
τ=τs

hc[τ ] (15)

according to (10). For 2-merge and 2-split operations, the
following equation is relevant:

lr · µr = ls1 · µs1 + ls2 · µs2 , (16)

where 〈 s1, s2 〉 are two adjacent slots that are embraced by
the new slot r. The error of a single slot s in (8) simplifies
to

ec (s) =

τs+ls−1∑
τ=τs

(hc[τ ]− µs)
2

=

τs+ls−1∑
τ=τs

h2c [τ ]− ls · µ2
s , (17)

so that there is no need to store the individual values hc[τ ]
for obtaining the errors.

4.4.1. 2-Split Operations

Splitting a slot s into two separate slots r0 and r1 pro-
duces the accuracy gain

C∩(s, 2) = ec (s)− (ec (r0) + ec (r1))

=
ls · lr0
ls − lr0

(µs − µr0)
2
.

(18)

To obtain the largest accuracy gain, we need to find

max
1≤lr0<ls

{C∩(s, 2)}. (19)

This optimum can only be determined at the end of the
slot, when µs is known, and if all value pairs (lr0 , µr0) are
known. The storage demand therefore depends linearly on
the number of harvesting values per slot. For this reason,
we introduce the constant C that defines the number of
candidate split points analyzed per slot. These candidate
points are equally distributed over the analyzed slots (in
terms of multiples of the minimum slot length Lmin).

4.4.2. 2-Merge Operations

A 2-merge operation at the end of cycle c on the ad-
jacent slots 〈 s1, s2 〉 ⊂ Sc−1 yields the merged slot r (cf.
Sect. 4.2.2). The accuracy loss induced is

C∪(〈 s1, s2 〉) = ec (sr)− (ec (ss1) + ec (ss2))

= ls1 · µ2
s1 + ls2 · µ2

s2 − lr · µ
2
r

=
ls1 · ls2
ls1 + ls2

(µs1 − µs2)
2
.

(20)

The calculation of C∪ thus only requires the already stored
lengths and values of the involved slots.
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4.4.3. Initial slot distribution

Upon boot-time of a node, an initial slot distribution
must be available. Here, using expected slot distribu-
tions derived from empirical data or simple models are
advisable—e.g., long slots at the beginning and end of a
cycle plus equally distributed ones in between for outdoor
solar harvesters. Otherwise, we recommend lengths to pro-
vide an unbiased home position, i.e, slots of equal or close-
to-equal lengths.

4.4.4. Implementation

We evaluated the memory consumption of our adap-
tive scheme versus static slots using an implementation
for TinyOS 2.1 that we currently employ in a real-world
installation. Our implementation analyzes and temporar-
ily stores C = 3 equidistant split points of the current slot
and stores the best B = 1 slot for splitting and merging
each. Harvester output is the average of 12 samples taken
every 30 s, yielding an effective sample period of 5 min.
We chose Lmin = 1 and Lmax = 64 (w.r.t. 5 min intervals),
so that slot lengths can be stored along with slot values
in a 16 bit unsigned integer (the ADC has a 10 bit resolu-
tion). The choice of parameters complies with the results
presented in Sect. 7 and 8.

Using the same number of slots, RAM overhead is
16 byte compared to static slots. For example, 12 adap-
tive slots consume 42 bytes, whereas 12 static slots need
26 bytes. Memory consumption for 24 slots is 66 byte for
adaptive and 50 byte for static slots. For each slot of a
cycle, computational overhead is restricted to storing the
current mean values of the harvester output at the possible
split points, finding the optimum per slot and possibly re-
placing the stored optimal split point with the optimal one
of the current slot. At the end of each cycle, merging costs
are calculated and at most B = 1 split-and-merge oper-
ation executed. The current implementation requires less
than 2.1 kB additional program memory compared to an
implementation without slot adaptations. Floating-point
operations are completely avoided, and the main portion
of program memory is due to multiplications and divisions,
which are supported on the used IRIS platform in software
only.

5. Harvesting Forecast

This section introduces and explains the forecasting
methods used to compare the prediction accuracy of static
and adaptive slot distributions.

5.1. Tracing Trends along Cycles

In Sect. 2.3 we have introduced the slot value µs, which
represents the harvester output in slot s of the previous
cycle. This value may be used for prediction directly, but
most existing forecasting schemes calculate a smoothed or
average value µ̄s based on recent cycles.

The authors of [19] store the values µis of D cycles and
use the per-slot average for prediction:

µ̄s ←
1

D

D−1∑
i=0

µis (21)

This method has a memory footprint of S · D slots and
requires calculation of the mean for each slot and cycle.

A more resource-efficient method is to calculate an ex-
ponentially weighted moving average as in [17]:

µ̄s ← α · µ̄s + (1− α) · µs (22)

Here, the memory footprint is reduced to S slots.
These smoothing approaches are compared in Sect. 8.2.

Both are compatible with the adaptive slot distribution
presented in this paper: The slot values of previous cycles
have to be mapped to a (possibly) adapted slot distribu-
tion according to the split and merge operations explained
in Sect. 4.2.1.

5.2. Short-Term Prediction

The weather-conditioned moving average (WCMA) pre-
diction algorithm has drawn much attention [19, 20, 21].
Its underlying idea is to calculate a prediction µ̂s for the
following slot s based on (i) the smoothed slot value µ̄s,
(ii) the value µr0 of the current slot r0, (iii) a scaling fac-
tor Λ obtained from the ratio of the values and correspond-
ing smoothings of the most recent K slots r0, . . . , rK−1,
and (iv) a trend weight ω ∈ [0, 1]:

µ̂s = ω · Λ · µ̄s︸ ︷︷ ︸
trend portion

+ (1− ω) · µr0︸ ︷︷ ︸
current portion

.
(23)

The trend scale Λ is calculated using

Λ =

K−1∑
k=0

λ (k) · µrk

µ̄rk

, λ(k) =
2 · (K − k)

K · (K + 1)
. (24)

The quotient in the calculation of Λ bears the problem of
possible divisions by zero. We avoid this by replacing the
quotient with the value 1, if µ̄rk = 0.

This prediction scheme uses the two additional param-
eters ω and K, while also introducing the weights λ. We
will address the influence of these parameters in Sect. 8.4.
An important, implicit factor of the prediction scheme is
its limited prediction horizon, which is coupled with slot
lengths, i.e., Z = ls. We will also analyze this detail.

5.3. Long-Term Prediction

A resource-efficient method of generating long-term pre-
dictions is to use the smoothed slot values µ̄s as predictions
µ̂s directly [17]. We are not aware of any improved ver-
sion of this approach. The prediction horizon of such an
approach is Z = T , because µ̂s = µ̄s is only updated at
the end of slot s.
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dataset days year type / unit location

ECSU 365 2010 solar / irradiance Elizabeth City, NC
LOLH 365 2010 solar / irradiance La Ola Lanai, HI
SPMD 365 2009 solar / irradiance South Park, CO
TUHH 194 2010 solar / current Hamburg, Germany

Table 1: Datasets used for evaluation

6. Data Basis and Metrics

This section introduces the datasets and metrics used
for the evaluation in the subsequent sections.

6.1. Data Basis

For the evaluation of the adaptive and static slotting
distribution, we used four solar datasets (cf. Table 1).
The first three were taken from the Measurement and In-
strumentation Data Center (MIDC) [23]. The fourth one
(TUHH) was recorded by the authors with the solar har-
vester presented in [18]. It was placed outside on a window
sill facing westwards on the fourth floor of the main Uni-
versity building. We used the TUHH dataset to evaluate
the performance of the slotting and prediction schemes for
a sensor node placed in an arbitrary but realistic posi-
tion. To achieve a comparable data basis, we converted
all datasets (if necessary) to 288 values per day, each rep-
resenting the average harvester output within 5 min base
intervals.

The datasets reveal different characteristics regarding
the shape of the measured values on a day’s cycle. Fig-
ure 3 shows a descriptive statistic for the harvester output
within each base interval of the observation time. The
distinctive pattern of the TUHH dataset in Fig. 3a stems
from the shade produced by the building in the morning.
The noticeable dip between 2 and 3 PM is caused by a
roof overhang. In contrast, the ECSU dataset in Fig. 3b is
very symmetric and regular, indicating perfect harvesting
conditions. LOLH and SPMD (Fig. 3c and 3d) experience
lower values in the afternoon, most likely caused by more
clouds in the afternoon.

6.2. Metrics

To evaluate the representation and prediction accu-
racy, we have applied several metrics. Due to similar
qualitative results, we exclusively show results of the root
mean square error (RMSE). We also calculated the normed
cross-correlation function (NCCF), the mean error, and
the mean absolute deviation (MAE). All metrics were cal-
culated on a per-day basis, i.e., we first determined the
prediction for each day and then computed the metric for
that day. We did not calculate relative errors, because we
believe that for most applications, absolute values are of
higher relevance, e.g., a 50% error at times of almost zero
harvester output does not significantly change the charg-
ing process of a sensor node’s energy buffer, whereas the
contrary is the case at times of high harvester output. In

addition, using relative errors in the scenario of energy
harvesters implies difficulties at times of low harvester out-
put. Here, small absolute deviations may lead to almost
infinite relative changes, e.g., harvesting 1 mA as opposed
to an expectancy of 0 mA. Using absolute errors yet leads
to problems when dealing with slots of different lengths,
which is the case for the adaptive slotting scheme. To
compare errors on the same statistical basis, we decided
to only compute per-day errors.

7. Evaluation of Slot Representation

In this section we analyze adaptive slot distributions
w.r.t. slot lengths, starting points, and representation er-
rors.

7.1. Adaptation Performance

Figures 4a and 4d show a heatmap of the harvester
output for the complete observation periods. The profile
of the ECSU dataset is widely symmetric, days with high
harvesting potential are dominant and the seasons of the
year evident. In contrast, there are many bad days at
the TUHH site and more dynamics. Harvesting poten-
tial is low in the mornings, caused by the shadow of the
building, with a sudden increase depending on the sea-
sonal altitude of the sun. The remaining subfigures show
the corresponding slot distributions for 6 slots. They indi-
cate that the adaptive scheme reproduces the days’ cycle
quite accurately by choosing slot lengths according to the
harvesting potential. On days with low total potential, the
scheme splits the first slot and merges slots in the middle
of the day, e.g., starting at day 70 in Fig. 4b. Prominent
peaks on consecutive days, e.g., at around day 50, cause a
capturing slot rearrangement.

While this behavior is intended, it has the following
side effects: As can be inferred from Fig. 4e at around
day 270, the scheme shapes short slots in the afternoon,
because these days have poor harvesting conditions in the
morning but short periods of better conditions in the after-
noon. The slot distribution adapts to an unusual pattern.
However, the distribution recovers quickly on the following
days. The memory-saving version with a restricted num-
ber of C = 3 split points is displayed in Fig. 4c and 4f. The
overall behavior does not change significantly, but adap-
tations are expectedly less fine-grained and some split-
operations with low influence are omitted due to fewer
split points.

A detailed comparison of an adaptive and optimal dis-
tribution is depicted in Fig. 5. The adaptive scheme identi-
fies the two peaks and traces their falling edges accurately.
Only few slots are used for the periods of low harvester out-
put in the morning and late night. The slot distribution
yields close-to-optimal points for comparing actually har-
vested energy with the corresponding predictions. This
is indicated by the optimal distribution (dashed curve).
The latter is sensitive to noise (fourth cycle) and there-
fore overfitting w.r.t. the previous days. In conclusion, the
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Figure 3: Statistical analysis of potential harvester output within the 5 min base intervals throughout a day
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Figure 4: Adaptive slot distributions with one adaption per day (B = 1) and S = 6 slots. Left: heatmap of the harvester output per base
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Figure 5: Slot representation of adaptive (solid) vs. optimal (dashed)
slots. TUHH dataset with S = 12, Lmax = 64, B = 1, C = 3. The
filled curve indicates the real course of the days

comparison shows that adaptive slots find a distribution
that is close to the optimal one, while it is less sensitive to
a single day.

7.2. Representation Error

Figures 6a and 6b depict the RMSE for the TUHH and
ECSU datasets. The lowest error is naturally produced by
the optimal slot distribution (cf. Sect. 3.3). The adap-
tive scheme performs in between the optimal and static
distributions, having about the same distance to each of
these. For a larger number of slots, the adaptive scheme
largely outperforms the static distribution. The latter
spends about half of its slots for periods of low or no har-
vester output, plus the adaptive scheme is able to adapt to
the distinct course of the TUHH dataset. For the ECSU
dataset, the performance of the adaptive scheme with few
slots is close to the optimal distribution, since the dataset
is mostly regular and less changing and can therefore be
adapted easier. Both figures indicate that the gain of more
than B = 1 split operation is marginal; even for the TUHH
dataset, for which its impact is slightly higher. Restrict-
ing the adaptive scheme to C = 3 split points per slot is
of low significance for the representation error (the curves
are hardly distinguishable).
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Figure 7: Cumulative distribution function of slot lengths for the
optimal distribution. The filled dots indicate the slot lengths of the
corresponding static distribution.

7.3. Distribution of Slot Length

The cumulative density function (CDF) of slot lengths
for the TUHH and ECSU datasets using optimal distribu-
tions is portrayed in Fig. 7a and 7b. The majority of the
slots is shorter than the ones used in a static setup (filled
circles). This is compensated by a few slots with extreme
lengths. Due to the long and event-less morning at the
TUHH site, there are slots embracing as many as 144 base
intervals or 12 h, respectively. There are no such long slots
in case of the ECSU dataset. Virtually no slot is longer
than 96 base intervals and for S = 24, only 5% of the slots
exceed 72 base intervals. The reason is the brief period of
the year with short days (winter) and the symmetry of the
harvesting potential. Note that the CDF of slot lengths
depends on the beginning time of the cycles: There could
be one very long slots embracing the night. Since this may
decrease adaptation performance (for a low C), having a
maximum slot length is useful from a practical perspective.

The evaluation of slot lengths indicates that, for solar
harvesting, it is sufficient to restrict slot lengths to a few
hours in the presence of 12 to 24 slots. If there are too
many slots, most of them cover one or two base intervals
only, while a few slots cover the remainder of a cycle. Al-
though the representation error is very low, there might
be no benefit regarding long-term prediction quality due
to the changes in between days (cf. Sect. 6.1).

8. Evaluation of Prediction Quality

In this section, we analyze the influence of adaptive
slots on short- and long-term prediction accuracy and ad-
ditionally evaluate the influence of the parameters of the
prediction schemes. Unless otherwise noted, we use B = 1,
C = 3, Lmin = 1, Lmax = 64, because these parameters
gave satisfying results (cf. Sect. 7) and they guarantee
a resource-efficient implementation on sensor nodes (cf.
Sect. 4.4.4).

8.1. Correlation between Cycles

Prior to assessing the prediction quality of the schemes,
we analyzed the correlation of days with respect to their
distance. The results are shown in Fig. 8. The days of
TUHH (Fig. 8a) exhibit the weakest correlation among the
datasets. The median RMSE of 3.82 mA is large in com-
parison with the mean harvester output of only 2.72 mA.
Since the RMSE correlates with day distance, more recent
days have a higher impact on predicting future days. Fig-
ure 8b reveals that days of ECSU are stronger correlated.
However, there are a few outliers, which are caused by
changes from sunny to cloudy days and days with unsta-
ble weather conditions. The ratio of the median RMSE of
119 W/m2 for two adjacent days and the mean harvesting
output of 191 W/m2 is considerably lower as for TUHH.

8.2. Cycle Prediction with Static Slots

Adjacent days have higher correlation and lower RMSE
than those being further apart. Many prediction schemes
thus calculate (weighted) averages of slot values to increase
prediction accuracy. In this section, we compare the two
methods presented in Sect. 5.1 and inspect their gain over
simply using the slot values of the previous day for predic-
tion.

Figures 9a and 9b depict the error of predicting a full
cycle by averaging each slot value of the previous D cy-
cles. For the TUHH dataset (Fig. 9a), prediction accu-
racy is slightly affected by D only. Mean and median stay
almost unaffected, but outliers in both directions are re-
duced. The mean prediction error is slightly above (S = 6)
or below (S = 24) the RMSE of adjacent days. Hence,
slotting does not infer a loss of prediction accuracy, and
averaging slot values introduces a lower variance of ac-
curacy. The situation is different for the LOLH dataset
(Fig. 9b): averaging 3 days decreases the mean predic-
tion error by roughly 20% and lowers its variance. Half
of the improvement is due to the smoothing effect of slot-
ting itself (D = 1 in the plot), which compensates for the
non-cyclic variations in the afternoon.

Prediction accuracy of exponential smoothing is shown
in Fig. 9c and 9d. A larger α may decrease the average
(median) RMSE and deviation, while the sensitivity to α
is low. This implies that choosing α not optimized for
an environment or individual node does not have a large
negative impact. This has practical relevance, for optimal
settings are not likely to be known for every single node
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Figure 9: Prediction accuracy with static slots: Comparison between predictions obtained by averaging (upper row, cf. (21)) and exponentially
smoothing (lower row, cf. (22)) among past cycles. The plots show minimum and maximum values (light shade), quartiles (darker shade),
medians (filled circles), and mean values with standard deviation (filled circles with errorbars)

and its environment. Choosing α from the range [0.6, 0.9]
gives good results for all datasets (including ECSU and
SPMD) considering the complete statistical distribution
of RMSE values.

In conclusion, smoothing slot values exponentially is to
be favored over averaging. The prediction accuracy is pre-
served or even improved, while memory consumption and
computing power are heavily reduced. Smoothing in gen-
eral brings an accuracy gain as compared to plainly relying
on the slot values of the previous day. Parameter sensi-
tivity is comparably low and the range of good parameter
choices is similar for all datasets.

8.3. Cycle Prediction with Adaptive Slotting

Due to the results in Sect. 8.2, we analyzed the ben-
efit of an adaptive slotting scheme using exponentially
smoothed slot values. The results for the TUHH and
LOLH datasets are shown in Table 2. For S = 6 the adap-
tive scheme yields a higher prediction accuracy: The mean
RMSE decreases by up to 0.15 mA. Using 12 adaptive slots

achieves the precision of 24 static slots. This observation
is valid for all datasets. Having more than 12 adaptive
slots does not increase prediction accuracy notably. The
range of smoothing factors with best results is roughly the
same as stated before.

A more detailed analysis of prediction accuracy regard-
ing the behavior of the different schemes on a per-day basis
yields additional insight. Figure 10 portrays the prediction
error for an excerpt of days of the ECSU dataset. The plots
indicate that the potential of using adaptive slots is higher,
if the number of slots is equal (Fig. 10a). The comparison
in Fig. 10b supports the finding, that adaptive slotting
with 12 slots is on par with 24 static slots: All curves
behave similarly, plus the error difference (lower row) is
always close to zero. In most cases, both slotting schemes
achieve a RMSE close to the corresponding, possible op-
timum, which is derived by calculating the slot values for
the following day based on the slot distribution of the cur-
rent one. However, there are outliers for both smoothing
factors α, but at different times. If the weather changes
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S static slots S adaptive slots
α 6 12 18 24 6 12 18 24

0.0 4.17 4.01 4.02 3.98 4.09 4.01 4.05 4.07
0.2 4.10 3.90 3.89 3.84 3.97 3.85 3.86 3.88
0.4 4.06 3.83 3.81 3.76 3.91 3.76 3.75 3.76
0.6 4.04 3.80 3.76 3.71 3.89 3.71 3.69 3.69
0.8 4.05 3.80 3.77 3.71 3.92 3.72 3.69 3.68
0.9 4.08 3.85 3.80 3.76 4.00 3.77 3.74 3.74

(a) TUHH: mean RMSE (mA)

S static slots S adaptive slots
α 6 12 18 24 6 12 18 24

0.0 181.8 172.4 172.6 173.4 174.7 176.2 180.0 182.5
0.2 177.9 166.3 165.0 165.1 169.4 167.8 169.7 171.3
0.4 175.3 162.1 159.7 159.2 166.0 161.9 162.3 163.2
0.6 173.5 159.1 155.9 155.0 163.9 157.8 157.0 157.2
0.8 172.2 157.0 153.2 151.9 163.8 155.5 153.2 152.8
0.9 171.8 156.2 152.1 150.7 165.9 155.8 152.0 151.3

(b) LOLH: mean RMSE (W/m2)

Table 2: Prediction accuracy of static vs. adaptive slots with exponentially smoothed slot values (Lmin =2, Lmax =128 for S=6)
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Figure 10: Per-day comparison of prediction accuracy using 1-adaptive (top) and static slots (middle). The difference of the scheme is shown
in the bottom plot (values larger than 0 indicate a higher accuracy of the 1-adaptive approach). The plots show the performance with α = 0.8
(dark bars) and α = 0.4 (light bars). The solid step function indicates the possible optimum of the respective schemes by applying the slot
distribution of one day to the following one.

from one stable period to a different stable period—e.g.,
from sunny to cloudy days—a smaller α proves beneficial,
as it allows for a quicker adaptation to the new conditions.
If, in contrast, there only is one outlier day—e.g., a cloudy
day within a series of sunny days–a large α yields better
results, because the outlier has lower impact on the slot
values. These large errors are an inherent problem of the
prediction scheme, attenuating the benefits of the adap-
tive slotting scheme in a statistical evaluation by heavy
outliers affecting the mean RMSE.

Slot distributions for the ECSU and TUHH dataset are
shown in Fig. 11. They clearly illustrate how the adaptive
scheme captures the symmetric curve of solar radiation,
but also merges and splits slots to react to the changed
conditions. The higher prediction accuracy of 6 adaptive
vs. 6 static slots can be explained by the improved approx-
imation of the curve, cf. Fig. 11a. Yet, caused by the larger
variations in the middle of the day, the scheme arranges
the first and last slot to embrace short times of non-zero
radiation, leading to a non-negligible error at night. If
more slots are used (Fig. 11b), this problem is no longer
observed. The results of 24 static versus 12 adaptive slots
are similar: Both approaches have (almost) the same res-
olution during the non-zero radiation phases of the days.

The figures pinpoint the major problem of using a sim-
ple prediction based on smoothed slot values: There is no
remedy for changed conditions, in which a large α prevents
quick tracking.

Distinct patterns profit from adaptive slots. The two
peaks of the TUHH dataset are correctly identified and
tracked (Fig. 11a, third cycle). Additional slots improve
the course within the peaks (cf. Fig. 11b). The figures
reveal that the adaptive scheme identifies the regions of
interest—i.e., those with high but varying values. If ap-
plying a more advanced prediction technique than simply
using smoothed slot values, this behavior can be turned
into a higher return on investment. In particular, changed
conditions, that are more likely to have a larger influence
in periods of higher and varying harvester output, can be
identified directly and with low latency. Thus, reactions
on additional or less harvester output than forecasted can
be undertaken more timely.

8.4. WCMA Short-Term Prediction

This section compares the accuracy of WCMA-based
forecasts (cf. Sect. 5.2) using adaptive versus static slots.
We also investigate the impact of the WCMA parameters.
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Figure 11: Comparison of predicted slot values for static (dashed) vs. adaptive (solid) slottings for α = 0.8. The filled curve indicates the
real course of the days

8.4.1. Influence of the Trend

The per-day RMSE of static slots for the TUHH dataset
is illustrated in Fig. 12. The plots allow for several observa-
tions. Firstly, using the value of the previous slot (ω < 1)
does not lead to a significantly higher prediction accuracy;
in contrast, relying on the trend only is favorable. Sec-
ondly, there is a positive influence of the trend scale Λ
(K ≥ 1), but the improvement of K ≥ 2 is low (the open
circle can hardly be distinguished from the filled one). Us-
ing S = 6 slots is an exception: the low number of slots
gives almost no room for reacting to the course of the cur-
rent day. These observations are valid for all datasets for
similar values of α with the following restrictions. The
RMSE for ω > 0 increases for lower values of α, and for
α < 0.5 it is not beneficial to rely on the trend. For LOLH,
trend-scaling is only advantageous for more than 12 slots.
These results are comprehensible, because there is a lim-
ited correlation of the trend in adjacent slots: Closer and
shorter slots tend to have a higher correlation. Yet, there
are adjacent slots that exhibit almost no trend correlation,
e.g., if one of the slots has a very low µs. In contrast, using
µ̄s of the current slot s to predict µ̂r of the directly fol-
lowing slot r is not feasible, if the values of µ̄s and µ̂r are
not similar. Particularly solar harvesting does not offer a
similarity of adjacent slot values for a small S—e.g., cf.
Fig. 11, where certain slot values µs vary greatly.

8.4.2. Adaptive Slots

To compare the prediction accuracy of adaptive versus
static slots, Table 3 lists mean RMSE values for WCMA
based on exponential slot smoothings—the parameters and

dataset are the same as before. The general behavior is
similar, yet with notable exceptions. The profit of using
the trend portion is larger for adaptive slots. Using values
of K > 1 has a low but notable positive influence; the op-
posite is the case for static slots. Using a larger value of K
generally increases prediction accuracy of adaptive slots,
whereas it decreases the accuracy in many setups using
static slots. A generic choice of this parameter is therefore
simplified with adaptive slots. Moreover, prediction accu-
racy is improved, e.g., 12 adaptive slots (with K = 3) yield
almost the same results as 24 static slots, when ω ≥ 0.8.

The impact of adaptive slots on other datasets is sim-
ilar. The correlation of the trends among slots depends
on the dataset and time of the day (cf. Sect. 8.4.1). For
all datasets, 6 adaptive slots are preferable over the same
amount of static slots for low smoothing factors. For α =
0.5, adaptive slots outperform their static counterparts by
more than 11% for the ECSU dataset. For α = 0.8, both
have similar RMSE values, but adaptive slots work well
only for K ≥ 2. For all other parameter setups, adaptive
slots achieve better results, i.e., fewer adaptive slots are
needed to achieve a result accomplished with static slots;
thus less forecasts are required.

Trend scaling does not work well with 6 adaptive slots
for the LOLH and SPMD datasets. For 12 slots, there
is no accuracy gain using adaptive slots instead of static
ones for LOLH, but a slight improvement for SPMD. An
increasing number of slots leads to an accuracy gain for
adaptive slots. Employing 24 slots with α = 0.9 achieves
a gain of more than 5% and 11% for 72 slots and the
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Figure 12: Influence of trend weight ω and K on prediction accuracy of WCMA. TUHH dataset with static slots and α = 0.8

K, static slots K, adaptive slots
S ω 0 1 2 3 0 1 2 3

6

0.0 5.47 5.47 5.47 5.47 5.51 5.51 5.51 5.51
0.4 4.44 4.40 4.39 4.40 4.32 4.33 4.34 4.33
0.8 3.99 3.95 3.92 3.92 3.81 3.67 3.65 3.65
0.9 3.99 3.95 3.92 3.91 3.83 3.62 3.59 3.60
1.0 4.05 4.00 3.96 3.96 3.92 3.63 3.59 3.60

12

0.0 4.30 4.30 4.30 4.30 4.13 4.13 4.13 4.13
0.4 3.69 3.57 3.59 3.60 3.45 3.38 3.34 3.32
0.8 3.61 3.25 3.30 3.34 3.44 3.01 2.93 2.91
0.9 3.69 3.25 3.30 3.36 3.55 2.99 2.91 2.90
1.0 3.80 3.28 3.35 3.41 3.72 3.02 2.93 2.92

24

0.0 3.44 3.44 3.44 3.44 3.03 3.03 3.03 3.03
0.4 3.14 2.99 2.99 2.99 2.75 2.61 2.58 2.57
0.8 3.40 2.82 2.83 2.87 3.22 2.43 2.38 2.37
0.9 3.54 2.82 2.85 2.90 3.44 2.43 2.38 2.38
1.0 3.71 2.85 2.89 2.95 3.68 2.45 2.40 2.41

72

0.0 2.43 2.43 2.43 2.43 2.03 2.03 2.03 2.03
0.4 2.51 2.30 2.28 2.27 2.18 1.91 1.89 1.88
0.8 3.19 2.29 2.27 2.29 3.08 1.91 1.90 1.91
0.9 3.43 2.31 2.30 2.33 3.37 1.93 1.93 1.95
1.0 3.68 2.34 2.33 2.37 3.67 1.96 1.97 2.00

Table 3: Influence of ω and K on prediction accuracy of WCMA for
TUHH dataset with α = 0.8

LOLH dataset. The corresponding values for SPMD are
11% and 12%.

8.4.3. Impact of Slot-Value Smoothing

Smoothing slot values among cycles has an important
impact on prediction accuracy. The highest impact, of
course, unfolds for ω = 1. Figure 13 shows the prediction
accuracy for α, also comparing static and adaptive slot
distributions. For both datasets, α ≈ 0.9 gives optimal
results for static slots. While the slopes to the left of this
point are shallow, a strong increase in RMSE is observable
for a large value of α. It is thus advisable to rather choose a
too small α than a too large one. The plots also show that
an increase of S pays of better for small values of α (e.g.,
S = 6, . . . , 24), whereas the gap between 24 and 72 slots
is small compared to the tripled memory and computing
demand.

The prediction accuracy with adaptive slots is higher,
since the scheme captures the more fluctuating regions of

a cycle. Choosing the best smoothing factor α depends
on S, while it is generally independent of the dataset. In
general, the optimal α is greater for a larger number of
slots. For 6 slots, α = 0.5 is a good choice, while for 24
slots 0.85 to 0.9 yields the best accuracy. The reason why
fewer slots need a smaller α is buried in the fact that split-
and-merge operations target larger regions of a cycle, so
that a smaller α is required to more quickly adjust to the
new mean slot value.

8.5. Additional Observations

In the following, we provide additional results for pos-
sible modifications of WCMA.

Since using the value of the previous slot directly is of
low improvement for WCMA prediction accuracy, we an-
alyzed if it is beneficial to use an exponentially smoothing
of previous samples h[t] as, e.g., discussed in [17]. We re-
placed µr0 in (23) with an exponentially smoothed value
of recent h[t]. The results can be summarized as follows:
Firstly, the mean RMSE was lower w.r.t. to using the value
of the last slot. Secondly, there was a low improvement
over trend-only prediction (ω = 1), suggesting that a pos-
sible but uncertain accuracy gain is bought by introduc-
ing a new parameter. Thirdly, the benefit was larger for
adaptive slots, caused by the (intended) lower inter-slot
correlation. Thirdly, the results show a low sensitivity to
the smoothing factor with a minimum close to 0.3 for the
TUHH dataset.

The plots discussed in Sect. 8.4.1 suggest that pre-
diction accuracy improves with an increasing number of
slots S. However, this is only valid for short-term predic-
tions, since an increased S decreases the prediction hori-
zon. For very large values of S (S ≥ 72) an average or ex-
ponential smoothing of recent values h[t] gives the approx-
imately same mean result as a WCMA prediction regard-
less of the choice of ω and K. Instead of using additional
slots (and thus consuming more memory), performing mul-
tiple predictions per slot increases (short-term) predic-
tion accuracy—e.g., 24 equidistant predictions using only
6 static slots produce a mean RMSE of roughly 3.2 mA for
the TUHH dataset (α = 0.8), which is an improvement
of 0.8 mA over 6 predictions only. The error of less than
3.0 mA with 12 adaptive slots is yet not achieved. Using
adaptive slots is also more efficient due to the lower num-
ber of forecasts and schedule updates.
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Figure 13: Influence of smoothing factor α for trend-only WCMA prediction (ω = 1, K = 1)

8.6. Recommendations for the Field

The extensive evaluation has enabled us to derive the
key parameters of short- and long-term prediction for prac-
tical application on solar-energy-harvesting sensor nodes.
These results are vastly independent of the node’s location.
Energy forecasting with a small number of slots is feasi-
ble. Using 12 adaptive slots is a good compromise between
keeping a low-memory footprint and achieving improved
prediction results for short and long prediction horizons.
Smoothing slot values among cycles increases the predic-
tion accuracy. An exponential filter has a lower param-
eter sensitivity than averaging values of recent days. At
the same time, the prediction error is reduced in many
setups while preserving memory. A filter coefficient of
0.6 < α < 0.95 gave optimal results with low variation for
all datasets and S = 12. The short-term WCMA predic-
tion scheme produced optimal prediction results for ω ≈ 1.
To decrease the complexity of implementation, computa-
tion, and parameter-setup, we suggest using ω = 1. Adap-
tive slots profit from a trend-scale Λ based on a history
calculated from the trends of more than one recent slot.
The results of our evaluation support that selecting K = 2
or K = 3 is a good choice in all setups.

9. Conclusion

Achieving energy-efficient, reliable, and sustainable op-
eration of miniature energy-harvesting sensor nodes is cou-
pled tightly with accurate forecasting of their future en-
ergy intake. To achieve this goal, it is not sufficient to
generate a rough estimate of the cumulative energy per
day. Nodes must be aware of their energy budget per time
to derive optimal while depletion-safe task schedules. The
former largely depends on the positioning of each individ-
ual sensor node. Relying on global information, such as
forecasts from local weather stations in case of solar har-
vesters, is hence not sufficient. Determining static energy
patterns prior to deployment is hardly feasible in large net-
works, nor can they adapt to unexpected changes in the
environment and performance of the harvester. Forcing a
harvester’s cycle into a constant number of static slots can-
not capture short periods of high harvester output while
possibly wasting too many slots for periods of low interest,
i.e., zero energy intake.

In this paper we have presented the first adaptive slot-
ting scheme for energy-forecasting sensor nodes that iden-
tifies and traces the actual pattern of energy intake. By
an extensive evaluation using real-world datasets, we have
shown its ability to learn a harvester’s pattern of energy
production. We have integrated this novel scheme into
well-known and established forecasting algorithms for solar-
harvesting sensor nodes. Adaptive slots increase accuracy
for both short- and long-term predictions while preserving
a low memory footprint by taking advantage of unused
memory and requiring few additional bytes only. More-
over, slots adapting to the harvester’s energy pattern al-
leviate the sensitivity of prediction quality to the set of
parameters of the prediction algorithms, hence enabling
generic choices of parameter sets.

The results of this work demonstrate that improving
the fundament of known forecasting techniques—the slot
distribution describing the harvester’s pattern of energy
production—is more promising than refining the forecast-
ing techniques based on half-baked slot distributions. This
work shows that there is plenty of room for improving pre-
diction quality by analyzing and tracing the energy-intake
profile with low overhead. Our evaluation also reinforces
that long-term prediction may gain from incorporating
global information, such as cloud cover or snow warnings,
since a node’s view on the future is limited to its present
and local perspective.
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