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Abstract—This paper presents an algorithm to dynamically
determine the maximum supported uniform demand for energy
of sensor nodes powered by energy harvesters using superca-
pacitors as energy buffers. Knowledge about the maximum uni-
form consumption is required to adapt the sensor node’s duty
cycle or task schedule to achieve uniform, utility-maximizing,
and depletion-safe operation. Our algorithm makes use of
a supercapacitors’ relationship between state-of-charge and
voltage, is particularly designed to handle the non-linear system
model, and is lightweight enough to run on low-power sensor
node hardware. We define three energy policies, evaluate their
performance using a real-world solar-harvesting trace, and
analyze the influence of the supercapacitor’s capacity and
errors of the energy forecast.
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I. INTRODUCTION

Energy harvesting offers perpetual and maintenance-free
operation for sensor nodes [1], [2]. It is yet difficult to align
a node’s power consumption (i.e., its task schedule or radio
duty cycle) with the energy produced by a harvester a priori,
so as to achieve depletion-safe while uniform and utility-
maximal operation. Many harvesters, e.g., solar cells, show
an unsteady production profile: Energy intake varies within
orders of magnitude, may abruptly change, and depends
considerably on a node’s location. The maximum supported
uniform consumption of a node can thus be hardly foreseen.

Opportunistic and greedy consumption (i.e., take what you
get) is not an option. Many applications require uniform
and reliable node operation to guarantee constant sampling
rates and achieve low latency and connectivity in multi-
hop environments. Several solutions to this problem have
been presented [3]–[5]. They either require a linear system
model or do not work well for low-capacity energy buffers.
Thus, they cannot be employed on many low-cost energy-
harvesting sensor nodes that solely use supercapacitors [2],
[6]. These energy buffers yet have numerous advantages over
batteries, among these being simple (and low-cost) charging
circuits, virtually unlimited charging cycles, and the direct
relationship between state-of-charge and voltage [6], [7].

In this paper, we present and evaluate the concept of
energy policies to enable load-adaptation for this kind of
platform. The idea behind this concept is to simulate the
node’s future energetic course using an energy-harvest fore-
cast and to identify the maximum load complying with the
energy policy. The maximum load can be used to adapt
a nodes radio-duty cycle or can be utilized as an energy

budget [8]. An energy policy defines state-of-charge require-
ments within the prediction horizon. Since the definition
of energy policies is tightly coupled with the harvester
hardware, we introduce our hardware platform. We derive
a system model for its energy flow and an algorithm to
simulate the node’s energetic future for a given energy-
harvest forecast. We present three energy policies and show
a light-weight algorithm for load-adaptation. We compare
the policies using a real-world energy-harvest trace and
analyze the influence of the energy buffer’s capacity and
energy-harvest forecast errors. We discuss limitations of our
approach and address the remedies for the weaknesses of our
policy-based approach and give pointers to future work.

II. RELATED WORK

Several energy-harvesting power supplies for sensor nodes
exist. Prometheus [1] is based on a two-stage energy storage
system consisting of a supercap as the primary energy source
and a rechargeable Li+ battery. A solar cell serves as energy
source. Charging and discharging behavior of the circuit and
supercap are examined, while taking a first step into the
direction of energy-aware scheduling by adapting the duty
cycle to the current supercap voltage. Prometheus has been
successfully deployed in [9]. The Everlast platform stores
energy harvested by a solar cell in a supercap solely [2].
Maximum power point tracking (MPPT) is employed to
increase the produced electrical power. The harvester used
in this paper is a cross section of all presented works.

Kansal et al. presented a definition of energy-neutral
operation of sensor networks [4]. They have developed
abstractions to characterize the complex time varying nature
of self-sustaining energy sources with analytically tractable
models including an energy prediction model. Moser et
al. [3] have presented tools and methods that use mul-
tiparametric programming achieving optimal performance
in energy harvesting systems. Simulational results and the
evaluation of the algorithms on real hardware are discussed.
The LQ-tracker presented in [5] tries to adapt a node’s duty
cycle to its current battery level. This concept makes no
assumptions about the harvesting source, but does not func-
tion well for supercaps, which offer a rather low capacity
and operate over a wide voltage range.

Algorithms for the generation of energy-intake forecasts
have been studied. EWMA filtering with time slots exploits



the cyclic pattern of harvesters, such as solar cells [4].
The Weather-Conditioned Moving Average (WCMA) [10]
to combining the history of the last days and the current
weather situation to improve short-term forecasts.

III. ENERGY-HARVESTING SENSOR NODE

The energy-flow model and energy policies presented
in this paper are based on a customized energy-harvesting
power supply, the harvester, for the Iris node.

A solar cell with maximum power-point at 4 V and 35 mA
serves as a harvester. We chose a direct charging circuit
instead of a maximum power-point tracker as in [2]. The
advantages are a simple, low-cost circuit and a charging
current only depending on the lighting conditions. The main
disadvantage is that the harvested energy depends on the
supercap voltage. Our hardware platform provides a sensor
for measuring the current produced by the solar cell.

The harvester is designed for supercaps with a maximum
voltage of Vmax =2.7 V and, generally, any available capac-
ity. Results from the literature [1], [6] show that supercaps
with 25 to 100 F offer a small size and cheap prize. They
operate a sensor node for a few days at a 1% radio duty
cycle. The node can access the supercap’s voltage and thus
state-of-charge via an ADC port. To protect the supercap
from overcharging, the harvester automatically disconnects
the supercap from the solar cell, if its voltage exceeds Vmax.

We chose the Texas Instruments TPS 61220 to supply the
sensor node with a constant voltage of Vn = 2.7 V. The
regulator starts operation when Vc exceeds 1.6 V for the first
time and has a cut-off voltage of Vcut =0.5 V on our target
platform. We measured a switching efficiency η of 75% to
95% depending on input voltage and output load.

IV. SYSTEM MODEL: SIMULATION AND PREDICTION

From the simplified harvester circuit displayed in Fig. 1,
we derive a mathematical model encompassing the three
building blocks (energy reserve, intake, consumption):

η · Vc · (Ih − Ic) = Vn · In . (1)

Modeling the relationship of supercap voltage Vc and current
Ic as an ideal capacitor, i.e., Ic = C · V̇c, we obtain

C · V̇c = Ih −
In · Vn
η · Vc

. (2)

We neither consider leakage nor charging effects, as they are
negligible w.r.t. the consumption of sensor nodes [6], [7].

A. Simulating a Node’s Energetic Course

It is possible to simulate a node’s energetic course in
terms of Vc using (2) for a given current consumption In and
harvester intake Ih but requires simplifications. Solving (2)
analytically is impossible, and the hardware characteristics
imply additional constraints: The overcharging-protection
prevents Vc from exceeding Vmax, and the switching reg-
ulator fails if Vc < Vcut (cf. Sect. III).

regulator
(efficiency η)

Ih

Vc ≥ Vmax

C Vc

Ic

Vn

Ir In

Figure 1. Simplified equivalent circuit of the harvester

A fine-grained numerical evaluation is possible yet com-
putationally infeasible, since the precise temporal course of
In and Ih is required. Due to these limitations, we simplify
the problem by assuming that Ih and In are piecewise
constant functions. This simplification complies with reality:
• Only discrete samples of a real harvester intake trace Ih

exist. These samples can be converted into a piecewise
constant function of Ih, but do not yield the precise
course of Ih at any possible time.

• The (average) consumption of a node changes infre-
quently and is constant in small time intervals.

For Ih = const., η = const., In = const., (2) reduces to
the ordinary, first-order differential equation (ODE)

ẏ = b− a
y

(
y=Vc , a=

Vn · In
η · C

≥ 0 , b=
Ih
C
≥ 0

)
. (3)

This equation has the implicit solution

0 = y−y0+
a

b
·log

(
a−b · y
a−b · y0

)
−b·∆t = f(y, y0,∆t) , (4)

where y = y(t) and y0 = y(t0) with t ≥ t0 being points in
time with ∆t = t− t0

This equation can be solved with, e.g., Newton’s Method

yn+1 = yn −
f(yn, y0,∆t)

f ′(yn, y0,∆t)
. = g(yn, y0,∆t) (5)

for a given number of iteration steps or until an absolute
or relative error ε is achieved. Due to the overcharging
protection, y = Vc ≤ Vmax must be enforced during
calculation. Moreover, In = 0 if Vc < Vcut (cf. Sect. III).

In two special cases, (4) cannot be used:
1) If Ih =0 and thus b=0, we find y =

√
y20 − 2a ·∆t

2) For y0 = a
b , the solution is ẏ = 0⇒ y = y0

Figure 2 shows the corresponding algorithm.

B. Online Prediction of the Energetic Future

The approach used for simulation can be turned into
an algorithm for predicting a node’s energetic future. For
this purpose, an estimate of the harvester intake Ih is
required. State-of-the-art energy intake prediction [4], [11]
generates such a forecast in terms of a set of time slots and
corresponding mean intake values. Intake Ih does hence not
change within a slot. Assuming a constant average load In
in each slot reduces the overhead of predicting the energetic



future by solving (4) with (5), because only one solution has
to be calculated for each end of a time slot, and updates have
to be calculated only if a slot elapses. The results of [11]
suggest that 12 to 24 slots per day, requiring recalculations
only once every one or two hours, are sufficient.

V. POLICY-BASED LOAD MAXIMIZATION

In this section, we present the concept of energy policies
and introduce an algorithm to identify the maximum con-
stant load satisfying a given policy. The maximum load can,
e.g., be used to set up the node’s duty cycle or task schedule.

A. Energy Policies

An energy policy P is a conjunction of predicates that is
evaluated for a time series V =<v0, . . . , vn−1> of supercap
voltages. We have identified three different policies that we
introduce and discuss in the following.

1) Depletion Safety: Achieving perpetual operation re-
quires depletion-safe operation, hence the operating voltage
Vc of the supercap must not fall below the cut-off volt-
age Vcut. Due to uncertain energy intake in the future, we
define a critical voltage Vcrit ≥ Vcut that must never be
undercut. The corresponding policy is

PDS(V) := ∀v∈V : v ≥ Vcrit . (6)

2) Maximum Power Point: The harvester introduced in
Sect. III operates at a better power-point for higher values
of Vc, since for a given value of In, the regulator input Ir
and Vc behave reciprocally, cf. (1)—i.e., Ir decreases for
increasing Vc, so that a larger portion of Ih charges the
supercap. The power point is thus best for Vc = Vmax and
it is desirable to operate the supercap at a high voltage.
Requiring a high voltage Vc at all times yet implies a low
load In, so that we only require Vc to reach Vmax (at least)
once a day. The corresponding policy is

PMPP(V) := ∃v∈V : v = Vmax ∧ PDS(V) . (7)

3) Balanced Consumption: Based on the principle of
energy-neutrality [4], we deduce the balanced-consumption
predicate, i.e., a node must not consume more energy than
its harvester produces within the prediction horizon.

PBal(V) := v0 = v|V|−1 ∧ PDS(V) . (8)

In particular, the final voltage must be the same as the initial
voltage; intermediate voltages are not considered.

B. Finding the Maximum Compliant Load

Given an energy policy P , we target at finding the
maximum compliant load I∗n , so that the resulting time series
of voltages V satisfies P . Here, I∗n is constant w.r.t. the
prediction horizon to achieve stable, uniform operation and
represents an average consumption.

For a given set of parameters, we use the algorithm from
Fig. 2 to calculate a series of intermediate voltages V ,

function SIMVC(Vc,∆t, In, Ih)
if Vc < Vcut then

In ← 0

y ← Vc
if Ih = 0 then

a← (VnIn)/(Cη)

y ←
√
y2 − 2a ·∆t

else if y 6= a/b then
repeat

yold ← y
y ← g(y, Vc,∆t)

until | yold − y |< ε
y ← min (y, Vmax)

return y

function FINDMAXLOAD(Vc,S)
l← 0
h← Imax

n
repeat

m← (h+ l)/2
v ← Vc
V ←<v>
for all (l, µ) ∈ S do

v ← SIMVC(v, l,m, µ)
V ← V ∪ <v>

if P(V) then
l← m

else
h← m

until h− l < tol
return l

Figure 2. Left: algorithm for supercap voltage simulation; right: algorithm
to find the maximum supported load I∗n complying with policy P
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Figure 3. Characteristics of solar current Ih produced by the harvester

where the individual elements v ∈ V are the voltages at the
beginning (or ends, respectively) of time slots. We evaluate
P w.r.t. V to decide whether P holds or is violated. Finding
the maximum supported load I∗n is achieved efficiently by
binary search. The maximum number of iterations is limited
by an absolute tolerance tol, so that the binary search has
log2(Imax

n /tol) iteration steps, where Imax
n is the maximum

allowed consumption. The final algorithm is shown in Fig. 2.

VI. EVALUATION

A. Data Basis

We analyze the proposed energy policies with a 194-day
harvesting trace collected with our harvester, which was
placed on a window sill facing westwards. The current Ih
produced by the solar cell was sampled every 30 s, from
which we obtained 5 min averages. The daily distribution
of Ih is shown in Fig. 3 (left) and reveals a very distinct
course, which is due to shades produced by buildings and a
roof overhang. Fig. 3 (right) shows the overall distribution
of Ih. The mean current production is 2.72 mA and almost
80% of all 5 min averages do not exceed the mean. These
findings stress the need for online duty-cycle adaptation.

B. Methodology, Parameters, and Metrics

We simulate the voltage course for an Iris node powered
by our harvester with a time resolution of 5 min using our
Ih-trace. The node’s consumption In = I∗n is determined
by FINDMAXLOAD for a prediction horizon of 24 h and
updated periodically. We use Imax

n = 25 mA and η = 1 to



enable a straight-forward comparison of the values Ih and
I∗n . This setup complies with the current consumption of an
Iris node with enabled radio and the actual average efficiency
of our harvester (ca. 20 mA with 80% efficiency).

The supercaps are dimensioned from 25 F to 200 F. We
chose ε= 0.1 mV and tol = 10 µA. We test critical voltages
Vcrit from 0.5 V to 1.5 V. Forecasts are created with a per-
slot EWMA filter using 6 to 96 slots (of equal length). We
do not use the WCMA-approach, as it cannot produce long-
term predictions, i.e., predictions longer than one slot. To
evaluate the policies without bias of the chosen predictor, we
generate perfect predictions with and without slots, i.e., we
feed the actual Ih-data of the next 24 h to FINDMAXLOAD.

We assess the performance of the policies in terms of the
fractional downtime of the node and the distribution of I∗n .
The latter is displayed with box plots showing the median
along with minimum and maximum values plus upper and
lower quartiles. The horizontal gray line in all box plots
indicates the average value of I∗n .

C. Results

1) Perfect Prediction: The theoretical potential and con-
ceptual weaknesses of the policies are revealed by providing
a perfect prediction. Here, the node updates its load I∗n
every 5 min, i.e., with the granularity of the Ih-trace and
voltage simulation. Hence, no downtimes are experienced.
Figure 4 shows the distribution of I∗n . The figure reveals that
all medians are considerably below this average value. For
a 25 F supercap, only one fourth of the harvested current is
effectively used by the node. The influence of Vcrit depends
on C (see Fig. 4a): In case of small C, a larger value of
Vcrit leads to a smaller load. Combining Vcrit = 1.5 V with
a 200 F supercap increases the average load, because the
supercap is operated at higher voltages and thus kept in a
better (harvesting) power point. This effect is amplified by
the fact that a larger Vcrit increases the likelihood of Vc
reaching Vmax. Yet, a too large value of Vcrit will produce
the contrary result: Although the power point is good, only
a small fraction of energy can be taken from the supercap.

The maximum-power-point policy PMPP brings improve-
ments over plain PDS for C≥100 F (see Fig. 4b). This sup-
ports the previous findings and shows that small supercaps
are fully charged once per day in our setup, even without
applying PMPP. Figure 4c indicates that PBal improves over
PDS only for large capacities. Its overall performance does
not achieve the one produced by PMPP.

A detailed trace of Vc an In is shown in Fig. 5. On
days with high energy intake, PMPP and PDS show similar
voltages traces. Differences are notable, during days with
low intake. Particularly in the first days, PMPP achieves
higher loads, because Vc is held at a higher level. The price
of this benefit is paid, when a good day is followed by a poor
one (e.g., day 13): The load is suddenly decreased, whereas
PDS allows for a smoother descent. The main problem of

PBal is evident on days 13 and 15: Due to a drop in intake
prediction, the policy is only satisfied for In = 0. Ironically,
this situation always arises after particularly good days.

2) Perfect Prediction with Slots: We repeated the previ-
ous experiments by introducing slots, i.e., FINDMAXLOAD
is only executed at the beginning of a slot and the forecast is
less fine-grained (there is one average value for each slot).
In case of, e.g., 12 slots, In is updated every 2 h and the
forecast consists of twelve 2 h averages of Ih.

The overall performance of the policies does not change
considerably compared to the previous results. In general,
using less slots slightly decreases I∗n . We omit the distribu-
tion plot of I∗n due to space constraints. The combination of
coarse-grained prediction values and less frequent updates
results in non-negligible downtimes for Vcrit = 0.5 V.
Figure 6 shows that less slots lead to longer downtimes. For
PDS (see Fig. 6a), downtimes are longer for larger values of
C, because the charging time is longer. In contrast, PMPP

and PBal (Fig. 6b and 6c) enforce larger values of Vc, so
that less downtimes result from larger capacities.

3) EWMA Prediction with Slots: For real-world deploy-
ments, EWMA predictions with slots are frequently used.
We evaluated our policies for a wide range of smoothing
factors, but due to page limitation only discuss the results
for 0.8, which yields good results in our setup.

The distribution of I∗n depicted in Fig. 7 is similar to
the one for perfect prediction, but shows a larger variance
and less influence of Vcrit. Only for C = 200 F, PBal

and PMPP outperform PDS. The most stable operation,
i.e., least variance, is achieved by PMPP. Prediction errors
lead to increased downtimes, which is evident from Fig. 8.
Particularly for Vcrit = 0.5 V, PDS (Fig. 8a) suffers from
downtimes of up to 26%. An increase of Vcrit to 1.0 V
decreases downtimes, but cannot protect the nodes from
failure, when small capacities, offering less energy reserves
for the same Vcrit, are used.

The trace in Fig. 9 helps understanding these results. None
of the policies can prevent energy shortage on day 17. The
good energetic condition of the previous days is interrupted
by a day with almost no harvest, so that the EWMA forecast
is too high. This results in a low Vc but no adaptation of In,
since the forecast promises large values of Ih, i.e., Ih � I∗n .
Due to the poor energetic conditions, it takes 2 days to reach
the required start-up voltage of 1.6 V. Fig. 9 also reveals the
general reaction of the policies to prediction errors. PMPP

produces peaks of I∗n , if Ih exceeds the forecast. In contrast,
PBal decreases In in the same situation: If the harvest
exceeds the forecast, Vc becomes larger than expected. To
comply with PBal, i.e., retain Vc at the same time on the next
day, In must be reduced, since the forecast is only adjusted
slightly due to smoothing. The choice of Vcrit only plays
a role for PMPP and PBal, if the forecast promises a good
harvest. In subsequently improving conditions (days 9 to 13),
a higher but less stable load is achieved in comparison to the



25 50 100 200

0

1

2

3

4
E{Ih}

C (F) →

I
∗ n

(m
A

)

(a) PDS

25 50 100 200

0

1

2

3

4
E{Ih}

C (F) →

I
∗ n

(m
A

)

(b) PMPP

25 50 100 200

0

1

2

3

4
E{Ih}

C (F) →

I
∗ n

(m
A

)

(c) PBal
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Figure 6. Perfect prediction with 6 to 72 slots: Influence of capacity C, policy P on node downtime for Vcrit = 0.5 V (light) and Vcrit = 1.0 V (dark)
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Figure 7. EWMA prediction: Distribution of I∗n using 12 slots and an EWMA smoothing factor of 0.8. The critical voltage is Vcrit = 1.0 V

other policies. The downside of this behavior is a lower In on
single poor days (e.g., day 13) and subsequently decreasing
harvesting conditions (not shown in the figure).

D. Summary and Discussion

The results show that PMPP generally yields the highest
mean and lowest deviation of I∗n . For our prototype, the gap
vanishes for small values of C, as the solar cell charges the
supercaps even on days with low harvest. This also causes
a relatively low average I∗n compared to the mean Ih, since
a surplus Ih > Ir cannot be buffered for later use.

Step length ∆t influences the accuracy of SIMVC notably:
The more coarse-grained Ih and In are, the less accurate V
becomes. While the impact on the distribution of I∗n is rather
low, huge downtimes are experienced, if a perfect forecast
with only 6 slots meets a value of Vcrit close to Vcut.

The results of the EWMA forecasts produce several
insights: Forecast errors reduce the improvements of PMPP,
and ignoring a day’s trend provokes depletion. Choosing
Vcrit� Vcut guards against depletion while having a small
impact on I∗n in most cases. PBal does not work in praxis:
I∗n becomes smaller, when the forecast is exceeded.
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VII. CONCLUSION

We presented a policy-based concept for online adaptation
of an energy-harvesting sensor node’s consumption. Our
approach is tailored to (non-linear) systems solely relying
on supercaps as energy buffer, for which existing solutions
are inappropriate. We devised three policies to achieve
depletion-safe and uniform, utility-maximal node operation,
which we evaluated using a real solar-harvest trace.

The evaluation shows the applicability of the policies and
confirms that operating a supercap close to its maximum
voltage yields improved mean utility with low variation. The
results stress that choosing a duty cycle or task schedule a
priori is likely to either waste energetic resources or lead to
unacceptable node downtimes. Our policy concept achieves
rapid adaptation to the expected energy harvest. Enforcing
a minimum voltage slightly above the harvester’s cut-off
voltage decreases the risk of depletion but does not affect
utility. This is particularly important for forecasts using time
slots: Prediction errors and model inaccuracy caused by the
linearization due to long time slots must be compensated.

We also identified shortcomings. In a real deployment,
depletion cannot be always prevented. More precise energy-
harvest forecasts are needed to increase the performance
of the policy concept. An approach similar to WCMA is
an option, but needs detailed analysis. A second one is
pessimistic forecasting, e.g., predicting a lower bound of
energy intake per slot, but it requires a strategy for coping
with excess energy. Our current approach lacks an explicit
feedback loop, such as exploiting the error of predicted
versus real voltage to detect changing harvest conditions.
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