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Abstract—Electric double-layer capacitors, also known as su-
percaps, have several advantages over traditional energy buffers:
They do not require complex charging circuits, offer virtually
unlimited charge-discharge cycles, and generally enable easy
state-of-charge assessment. A closer look yet reveals that leakage
and internal reorganization effects hamper state-of-charge assess-
ment by means of terminal voltage, particularly after a charging
cycle. Sophisticated models capture this effect at the cost of an
increased calculation and parameter-estimation complexity. As
this is hardly feasible on low-power, low-resource sensor nodes,
we evaluate the performance of simple models on a real energy-
harvesting sensor node platform. We show that model errors
are as low as 1-2% on average and never exceed 5% in our
experiments, supporting that there is no need to employ more
complex models on common sensor node platforms, equipped
with unreliable ADC readings and uncertain consumption due
to hardware variation in the same order of magnitude.
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I. INTRODUCTION

Energy-harvesting sensor nodes [1]–[3] have the potential
and aspiration to extinct the burden of battery replacement
in many scenarios. Various harvesting sources can be used,
e.g., sunlight, radio frequency, vibration, or temperature dif-
ferences. Particularly sunlight is promising, since it produces
a sufficient amount of energy to supply sensor nodes drawing
several µA in sleep state and some mA in full-operation mode.

Unfortunately, the amount of harvested energy is neither
constant nor continuous. In case of solar harvesting, energy
can exclusively be scavenged during daytime, and its extent
depends on weather conditions, time of the year, and place-
ment. As a result, energy must be buffered, so that nodes
do neither suffer from temporal energy shortage nor is their
operation restricted to periods of incoming energy.

Thorough state-of-charge assessment of the energy buffer
is required to achieve perpetual and maximum harvest utility
operation via load adaptation algorithms [4], [5]. Although
various energy buffer technologies are available on the market,
most solutions do not comply with this requirement. State-
of-charge assessment depends on the charging history, dis-
charging rate, and temperature. Many buffer technologies have
additional drawbacks, such as large size, high costs, and the
need for complex charging circuits.
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Recently, a promising energy storage technology has be-
come available and affordable: electric double-layer capaci-
tors, also called supercaps. They fill the gap between capac-
itors and rechargeable batteries and can store enough energy
to keep sensor nodes operational for multiple days without
recharging. Their main advantage over rechargeable batteries
is the high number of possible charge-discharge cycles and that
they can be charged and discharged at almost any temperature.
While a lifetime of 2-3 years can be expected for lithium-
ion polymers, supercaps can last for 10 years or even more.
Moreover, supercaps do not need a complex charging circuit.

Reading the manufacturers’ data sheets [6], it is tempting to
assume that state-of-charge determination can be broken down
to measuring a supercap’s voltage. Recent research activities in
this field have yet reported that this is not entirely true [7], [8]:
Leakage and internal reorganization effects affect the voltage.
Modeling these effects is yet complex and involves calibration
of several parameters per supercap [8].

Using complex models with high calibration effort is not
an option for algorithms running on sensor nodes. They have
low computation power only, so that wasting energy due to
complex calculations and prolonged calibration of a highly
parametrized model is not desirable. Moreover, the following
reasons suggest that a too complex model overstates the case.
Firstly, the presence of hardware variation affects sensor pre-
cision and current consumption. Secondly, unknowns—such
as the future harvest—impact the available energy resources.
Thirdly, unaccounted or unidentified parameters, such as tem-
perature or hardware aging, may render models overfitted.

In this paper, we hence analyze the accuracy of simple
charging- and discharging models that can be efficiently run on
low-power, low-resource devices. For this purpose, we present
an energy-harvesting prototype power supply for sensor nodes
that enables practical experiments to obtain real-world evalu-
ation results. We derive models for lifetime prediction and re-
maining charging time. Running several charging-discharging-
cycles at common sensor node duty cycles using a small-
sized solar cell, we evaluate the accuracy of our models under
realistic conditions. We finally comment on possible methods
for quick and reliable self-calibration of a supercap’s capacity.

II. RELATED WORK

Various self-sustaining power supplies for wireless sensor
nodes exist. Prometheus [1] is based on a two-stage energy
storage system consisting of a supercap as the primary energy
source and a rechargeable Li+ battery. The supercap conserves



Fig. 1. Energy harvester hardware with solar cell and 25F supercap

the battery by limiting its charging and discharging cycles. In
the corresponding paper, charging and discharging behavior of
the circuit and supercap are examined. The authors take a first
step into the direction of energy-aware scheduling by adapting
the duty cycle to the current supercap voltage. Prometheus
has been successfully deployed in the Trio testbed [9]. The
Everlast platform stores energy harvested by a solar cell in a
supercap solely [2]. Maximum power point tracking (MPPT)
is employed in order to increase the efficiency of the solar cell,
i.e., the electrical power produced by the cell is maximized.
The authors claim that their platform can operate for up to 20
years while preserving high data rates.

Detailed studies about the charging and discharging be-
havior of supercaps exist. Barrade and Rufer discuss energy
and power density of supercaps [10] and derive analytical
models. Previous work of the authors of this paper introduces
a model for accounting supercap leakage [7]. Weddel et al.
substantiate that supercaps do not follow an ideal capacitor’s
model [8]. They propose a multi-layer cascade-circuit model
of resistors and ideal capacitors and discuss its accuracy. The
authors of [11] use a piece-wise approximation to model and
capture supercap leakage. Both works are highly relevant for
system design and supercap simulation, yet online parameter
estimation appears to be complex and unreliable for sensor
nodes. The latter assumption is due to low ADC precision in
most cheap sensor node platforms.

III. ENERGY-HARVESTING POWER SUPPLY

We built a customized energy-harvesting power supply
(harvester) for the Iris sensor node. Figure 1 portrays the
harvester mounted on an Iris node with removed battery pack.

A. Hardware Description
1) Harvesting Source: A solar cell with a maximum current

of 35 mA and a size of 39×39 mm2 serves as harvesting source.
We chose a direct charging circuit instead of a maximum
power-point tracker as in [2]. The advantages are a simple,
low-cost circuit and a charging current only depending on
lighting conditions. The main disadvantage is that the har-
vested energy depends on the supercap voltage. The harvester
provides a sensor for measuring the current produced by the
solar cell. This is achieved by measuring and amplifying the
voltage induced by the solar current across a 1 Ω shunt resistor
(1% precision).
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2) Energy Buffer: The harvester is designed for supercaps
with a maximum rated voltage of Vmax = 2.7 V. Results from
the literature [1], [7] show that supercaps with 25 to 100 F give
a good trade-off between size, capacity, and price; e.g., a 50 F
supercap can operate an Iris node at a 1% radio duty cycle for
more than two days. The supercap voltage and thus state-of-
charge can be read by the sensor node. To protect the supercap
from overcharging, the harvester automatically disconnects the
solar cell if the supercap voltage exceeds Vmax. It is possible
to disconnect the solar cell manually via the control line Sh,
which is connected to an I/O-pin of the micro processor.

3) Switching Regulator: A Texas Instruments TPS 61220
switching regulator [12] supplies the sensor node with a
constant voltage of Vn = 2.7 V. Its efficiency η ranges from
75% to 95% and it has a cut-off voltage of Vcut = 0.5 V for
our platform. Figure 2 reveals that η only depends on the input
voltage but is almost independent of the output current.

B. Equivalent Circuit System Model

1) Simplified Equivalent Circuit: The simplified circuit of
our harvester is displayed in Fig. 3. The current Ih ≥ 0 (the
harvest) is produced by the solar cell, and the current Ir ≥ 0
is consumed by the regulator to supply the sensor node with
In > 0 (the load) at the constant output voltage Vn and with a
conversion efficiency η. The current Ic flows into the supercap
with capacity C. If Ic is positive, harvest exceeds consumption
and the supercap is charged; otherwise, the supercap acts
as source and discharges to supply the sensor node. Vc is
the voltage of the supercap. Note that due to overcharging
protection, Vc cannot exceed Vmax and that the regulator will
fail, if Vc underruns Vcut.



2) Energy-Flow Model: The circuit in Fig. 3 yields the
mathematical model

Ih − Ir = Ic with Ir =
In · Vn

η · Vc
, Ic = C · V̇c . (1)

Here, the supercap is modeled as an ideal capacitor, since
early results [7], [13] promise that leakage and reorganization
effects can be neglected. The regulator efficiency η can be
modeled as a constant value or as a function of Vc. We will
discuss this issue and its implications in the following.

IV. STATE-OF-CHARGE ASSESSMENT

We derive models for residual energy assessment of su-
percaps that are suitable for application on low-power and
resource-constrained devices. First, we model the charging be-
havior of supercaps. Second, we describe the voltage course Vc

of a pre-charged supercap for a known load In.

A. Charging Behavior and Charging Time Estimation

The remaining time until reaching a certain state-of-charge
is often needed for scheduling decisions or load adaptations.
For that purpose, we model the charging behavior of a super-
cap for Ih � Ir, giving a lower bound on charging time if
this condition is not satisfied. From Sect. III-B2, we deduce

Ih = C · V̇c . (2)

For a starting voltage V0 at time t0, (2) can be utilized to either
predict the supercap voltage Vc at time t0+∆t or the expected
time ∆t until charging to a given voltage Vt has completed.
W.l.o.g. we assume t0 = 0 in the following and hence obtain∫ ∆t

0

Ih(t) = C ·
∫ Vt

V0

dVc . (3)

The temporal course of Ih can be replaced by using its
(expected) average value Îh, yielding

Vt = V0 +
Îh
C
·∆t ⇔ ∆t = (Vt − V0) · C

Îh
. (4)

B. Voltage Course under Load and Lifetime Prediction

We analyze the temporal behavior of the supercap volt-
age Vc in a situation in which there is no energy intake
(Ih = 0), so that the supercap only supplies the sensor node
and is being discharged exclusively. This model can be applied
to perform pessimistic lifetime estimation, i.e., if energy
intake is expected in the future but its course is uncertain or
unknown. We neglect self-discharge and reorganization effects
and assume η = const.. From (1) in Sect. III-B2, we obtain

−Vn · In
η · Vc

= C · V̇c . (5)

For a starting voltage V0 at time t0, (5) can be utilized to
either predict the supercap voltage Vc at time t0 + ∆t or the
expected time ∆t until reaching a given voltage Vt. W.l.o.g.
we assume t0 = 0 in the following and hence obtain

−Vn ·
∫ ∆t

0

In(t) dt = ηC ·
∫ Vt

V0

Vc dVc . (6)

TABLE I
EVALUATION NODE SETUP

node nominal C harvesting source Ih

A 50 F solar cell / lamp 8.7 ± 2.8mA
B 50 F solar cell / lamp n.a.
C 50 F const. current source 15.0 mA
D 25 F solar cell / lamp 7.0 ± 0.8mA
E 25 F solar cell / lamp 6.5 ± 0.8mA

In this equation, the actual course of In does not have to
be known, since we can replace the integral by using the
(expected) average consumption

În =
1

∆t
·
∫ ∆t

0

In(t) dt . (7)

Finally, (6) can be solved to obtain the future voltage Vt or
the expected lifetime ∆t for a target voltage Vt:

Vt =

√
V 2

0 −
2VnÎn∆t

ηC
⇔ ∆t =

(
V 2

0 −V 2
t

) ηC

2VnÎn
. (8)

These equations can be easily used for state-of-charge determi-
nation. More importantly, they can be employed to determine
the maximum supported, uniform load În without predicting
the future energy intake. It is possible to use this approach for
a basic load adaptation scheme.

However, any application of these equations relies on
knowledge about the actual capacity C and regulator effi-
ciency η. Regulator efficiency depends on the input voltage,
which is not constant in our case (cf. Sect. III-A3). The
previous equations assume a constant efficiency for the sake
of model simplicity. A relaxation of this constraint can be
achieved by describing η as a piece-wise constant function
of Vc. Calculation of Vt or ∆t, respectively, can then be
realized through an iteration process using (8). This procedure
increases computation complexity and scales with the number
of η steps. Moreover, a precise and generic—i.e., node-
independent—function for η must be known.

V. EVALUATION METHODOLOGY

Before presenting results in Sect. VI, we explain the
methodology, evaluation setup, parameter choice, and metrics.

A. Setup and Parameters

We deployed five Iris sensor nodes powered by our harvester
with supercaps with nominal capacities of 25 and 50 F. A
desktop light was used to power the solar cells to achieve re-
alistic circuit behavior. The nodes were placed in a frequently
used laboratory resulting in node and lamp movements, while
sunlight broke through the windows in the afternoons. This re-
sulted in (slightly) changing lighting conditions. The harvester
of node C was connected to a constant current source instead
to investigate charging in the case of Ih = const. A summary
of the setup is displayed in Table I.

All nodes ran charge-discharge cycles for the set of parame-
ters shown in Table II, which were picked to resemble common



TABLE II
EVALUATION PARAMETERS

param. unit charging discharging

θ % 0.2 0.5, 1, 5, 10, 20
V0 V 1.0 1.4, 1.8, 2.2, 2.6
Vt V 1.4, 1.8, 2.2, 2.6 1.0
Sh false true

sensor node operation and to evaluate the influence of charging
target voltage. The harvesting current Ih was measured every
5 s, and an average was computed every30 s—no Ih-readings
are available for node B due to sensor failure. All other sensors
(cf. Sect. III-A) were read with a period of 30 s. The set of
readings plus a timestamp were transmitted to a base station.
We simulated radio duty-cycling MAC protocols by switching
off the radio after successful packet transmission with a delay
corresponding to the current duty cycle θ. For each value of θ
we ran one discharging cycle (with disconnected solar cell,
cf. Sect. III-A1) for different voltage ranges. For charging
the lowest duty cycle was always used, so that the node’s
consumption could be neglected (cf. Sect. IV-A).

B. Evaluation Methodology and Metrics

For each discharging and charging trace, we derived em-
pirical values of C by minimizing the root-mean-square-error
(RMSE) using (4) and (8), respectively. We also calculated
C values for 0.1 V-intervals of each trace. We chose involved
parameter values as in Sect. III-A and used a constant effi-
ciency of η = 87.5%. An evaluation using a step-function of
η at 0.1 V granularity is omitted due to space constraints. The
values of Ih and In were derived from the sensor node readings
and using the nodes’ measured average consumption profile.
This particularly implies that the results show a picture from
the perspective of a sensor node with imprecise consumption
knowledge, temperature dependency, and error-afflicted sensor
readings. This allows us to answer the question of whether
simple models are sufficient for sensor nodes.

VI. EVALUATION

In the following, we present the evaluation of our experi-
ment and analyze the accuracy of our models.

A. Charging Behavior

All charging traces of our experiment exhibit an almost
linear voltage increase and thus support (4). Figure 4 shows
an example trace. However, charging slows down for large
values of Vc for two reasons. Firstly, Ih decreases slightly
with increasing Vc (except for node C), since the power-point
of the solar cell is changed. Secondly, reorganization effects
have a more notable influence for larger values of Vc [7], [8].

A detailed study of C w.r.t. Vc is displayed in Fig. 5.
Both plots show similar average empirical C and reveal that
variation is also low. We can hence conclude that supercap
charging is highly predictable in low-power sensor networks
using (4), if Ih is known. Only for Vc approaching Vmax
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Fig. 4. Charging traces supporting near-linear time-voltage dependency

(Fig. 5a), the empirical C increases, i.e., charging slows down.
The model will hence produce too large voltage projections or
too small charging time estimates, respectively.

The distribution of the average C for the individual charging
procedures is shown in Fig. 6. Variation is within 0.5 F, and
capacity is slightly larger when charging to a higher Vc. The
figure supports that charging time estimation with a single,
empirically determined C is feasible and sufficiently accurate,
particularly if sensor readings or estimates of Ih are error-
afflicted or uncertain due to changing harvesting conditions.
Using nominal capacities would introduce large errors.

B. Voltage Course under Load and Lifetime Prediction

The voltage course under load generally exhibits the shape
expected from (8). Figure 7 shows the actual remaining
lifetime for two different θ and compares the traces with
ideal projections of our model. Deviations from the model
are particularly notable at high voltages Vc. This supports
previous findings about reorganization effects at high voltages.
Whether the charging duration and voltage difference also have
an influence is not clear and requires further investigation.
However, since lifetime overestimation does not pose a severe
depletion hazard at high values of Vc (corresponding to high
energy reserves), the model error is tolerable in a practical
sensor node deployment.

Under load, empirical capacities show slightly larger fluc-
tuation than for charging and the dependency on Vc is inverse.
This is indicated by Fig. 8. The mean capacity is smaller than
for charging in most cases. This offset may be caused by error-
afflicted consumption and harvest readings. Particularly for
low duty cycles, small absolute errors in consumption tracking
may lead to significant errors in state-of-charge assessment and
lifetime prediction, which supports our case for simple models:
In practical application, models need not be more accurate than
their input values. Figure 9 further stresses this point: Here,
marks in the plot indicating larger empirical capacity stem
from the runs with lower θ.

C. Model Errors

We analyzed the RMSE error of three variants of our
model; the results are displayed in Fig. 10. For all nodes, we
calculated the errors between our model and the recorded load
traces for three approaches. First, we used optimized values
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of C for each individual trace to identify the smallest possible
model error. It shows that the relative RMSE never exceeds
2% in this case. Second, we used a single value of C that was
obtained by averaging the empirical capacities at 2.2 V. The
relative RMSE is always below 5% with a median of 2% in
the worst case. Third, we used the nominal capacity, printed
on the supercaps, giving errors of up to 22% and medians
of 3 to 13%. The distribution of errors varies notably among
supercaps due to age, usage, and manufacturing deviation.

These results have the following impact. Firstly, despite
the simplicity of our model, it allows for producing low-
error of state-of-charge assessment in most cases. Secondly,
using a static, online-estimated capacity value increases errors
but keeps them within the range of common sensor node
consumption variance [14]. This approach is hence feasible.
Thirdly, using the nominal capacity printed on the supercaps
results in large, intolerable errors. Therefore, consumption
deviation among nodes caused by hardware variation is merely
insignificant compared to errors in capacity estimation.

Our evaluation shows that the proposed models work in the
field. Errors may be as large as 5%, but this number is small
when considering that sensor nodes have (slightly) different
consumption, yet only the mean consumption among all nodes
is used for evaluation, and although a constant regulator effi-
ciency is employed. Improved results are possible at the cost of
hardly feasible per-node consumption configuration. Despite

different charging currents and duration, target voltage, and
capacity, all discharging traces exhibit an almost equal shape
that show high correlation with the modeled behavior.

VII. CONCLUSION

We have presented simple models for state-of-charge as-
sessment on real sensor node hardware. Various charging
and discharging traces for common sensor node duty cycles
certify small model errors. More importantly, the errors using
a real-world compatible implementation with a static, online-
estimated capacity are below 5% in all cases and below
2% on average. The proposed method for state-of-charge
estimation is hence sufficiently accurate for application on
sensor nodes, particularly w.r.t. consumption uncertainties due
to hardware variation and error-afflicted sensor readings. These
observations hold for a wide range of hardware, since most
sensor nodes and low-power switching regulators and solar
cells have similar characteristics to the ones used in this paper.

Our results emphasize the need for online capacity calibra-
tion. Practical approaches have been addressed in [13]. How-
ever, additional points must be considered, e.g., calibration
should not be performed directly after a charging procedure,
since capacity estimates tend to be too small in this case.
Picking the right supercap voltage range for calibration is
also important to obtain a representative value of C. Further
investigation on this matter is scheduled for the near future.
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