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Abstract. The accuracy of link-quality estimators (LQE) is mission-
critical in many application scenarios in wireless sensor networks (WSN),
since the link-quality metric is used for routing decisions or neighbor-
hood formation. Link-quality estimation must offer validity for different
timescales. Existing LQEs describe and approximate the current qual-
ity in a single value only. This method leads to a limited accuracy and
expressiveness about the presumed future behavior of a link. The LQE
developed in this paper incorporates four quality metrics that give a
holistic assessment of the link and its dynamic behavior; therefore, this
research is an important step to achieving a higher prediction accuracy
including knowledge about the short- and long-term behavior.
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1 Introduction

For most algorithms in wireless sensor networks (WSN) it is essential that each
node has thorough knowledge about its direct neighbors. This information is col-
lected and provided by neighborhood management protocols and is used, e.g., for
routing decisions, group formation, or data sharing. The dynamic behavior over
time of the wireless channel and the missing correlation between adjacency and
possibility of communication—due to obstacles and multi-path propagation—
render the definition of the neighborhood of a node a nontrivial task. One im-
portant criterion used by neighborhood management protocols to determine the
importance of a node is the quality of the communication between nodes, which
in turn is provided by a link-quality estimator (LQE). Depending on the intended
application, either the short- or long-term qualities of a link or a combination of
both is preferred for choosing an appropriate node in the vicinity [2]. In the past
many different approaches were investigated [14,6,4,7,2,11,3,1] or are currently
used, e.g., in TinyOS [10,8].

In principle a LQE measures the quality based on logical (e.g., packet success
rate) or physical (e.g., received signal strength) metrics. Newer proposals use a
combination of these in order to improve the accuracy of the prediction [1].
However, common to these LQEs is that the measured quality is squeezed into a
single value—e.g., a moving average—due to memory restrictions and for easier
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Fig. 1. Link-quality estimation of a deteriorating and an improving link with a single-
value (left) and statistical multi-value (right) technique

comparability. In doing so, the value represents only a snap-shot of the plain
link-quality at a specific point in time without any additional information about
variation and the current trend of the long- or short-term behavior in the past.
The expressiveness of such a single-value metric is limited: This procedure is
comparable to a stock market, where a stock is described only by its current
value or an average of its last values. Based on this limited information it is a
game of luck to decide in which stocks to invest in the future. Furthermore, it is
important to know which stock will perform better for a short-term profit and
which is suitable for a long-term investment.

The same considerations are valid for judging the quality of a link. Figure 1
visualizes the problem of comparing two link-qualities. With a metric that re-
flects only the current quality, a comparison is nearly impossible even for a
short-term projection. Based on a single-value prediction the deteriorating link
appears superior, since its current link-quality is higher. When using multi-value
prediction the dynamic behavior of links can also be incorporated into the deci-
sion, so that the improving link will be favored: Although its current link-quality
is lower, its positive trend and low deviation lead to a better future perspective
when compared to the large variation and negative trend of the deteriorating
link. Furthermore, all existing LQEs are only capable of providing either a short-
or a long-term prediction. Yet, an application often needs different prediction
windows, e.g., a long-term prediction for forming a cluster and a short-term one
for selecting the eligible next routing hop.

In this paper we present a LQE that effectively calculates for each link four
quality characteristics: short- and long-term quality, variation, and an indicator
of the current trend. This LQE is a general approach that can be easily adopted
to various sources of link-quality metrics. Intensive simulations and experiments
are undertaken in order to proof the advantages of the newly developed approach
over existing ones. We compare and analyze the ability of link-quality tracking
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of modern and well-known LQEs with our new approach. In this context, we
identify problems and benefits of the different estimators, and we also deter-
mine the correlation and average error with respect to empirical ground-truth
measures. Moreover, we analyze the ability of the LQEs to select reliable links,
which is commonly needed for routing decisions and cluster formation. The paper
concludes with a discussion of the results and intended future research activities.

2 Link-Quality Estimation Techniques

Estimating link-qualities in WSNs is a nontrivial task. Many existing solutions
for other wireless networks are not feasible for WSNs. Particularly, the lack of
infra-structure, limited memory, energy constraints, and low-cost transceivers
complicate possible solutions. Various approaches were proposed in the past
to overcome these limitations and to provide a meaningful metric describing the
actual link-quality and thus predicting its future behavior. In this section, a brief
overview and discussion of general link-quality metrics is carried out, followed
by a thorough view on already existing approaches employing them.

2.1 Link-Quality Metrics

Basically, there exist two different categories of link-quality metrics: physical and
logical indicators. The former are provided by the radio hardware and are based
on the signal strength of a received packet, such as the Received Signal Strength
Indication (RSSI), the Link-Quality Indication (LQI), or Signal-to-Noise Ratio
(SNR). The logical indicators estimate the link quality by keeping track of mes-
sage losses. Examples of such metrics are: Packet Success Rate (PSR), Required
Number of Packets (RNP) [4], or Expected Transmission Count (ETX) [6] for
describing the effort needed to successfully transmit a packet.

Physical Metrics Using physical metrics has several advantages. The metrics
come without any additional costs, since the measurement is performed by the
receiver hardware every time a packet is received, or can at least be calculated
easily in the case of SNR. Also only a small number of samples is needed to
get a first approximation of the link-quality. Additionally, the metrics can be
measured by utilizing any traffic on the wireless channel without the need of
periodical broadcasts if the application produces enough traffic.

However, several research activities on this topic have shown that the physical
metrics are of shortened use [12]. First of all, the metrics are strongly dependent
on the receiver hardware—e.g., in our experiments with the Atmel RF230 many
links have a RSSI value close to the sensitivity of the transceiver, but provide
reliable packet reception at the same time. Secondly, the RSSI and LQI are only
available for successfully received packets, but not in the case of packet loss.
There exist different attempts to improve the quality of the measurements—e.g.,
RSSI calibration [5]—but these introduce a higher computation-complexity not
suitable for WSNs. Another disadvantage is the expressiveness of these metrics
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with respect to the application-related perception, i.e., the expected PSR. In [9]
Lal et al. show that physical metrics cannot always predict the PSR, especially
in case of long-range links with an RSSI near the sensitivity threshold of the
radio chip. In those cases the SNR-to-PSR relation is not deducible at all.

Logical Metrics The advantages of logical metrics are that they do not de-
pend on specific hardware characteristics and correlate directly with an appli-
cation point of view, i.e., the ratio of successfully transmitted packets. This
however leads to the problem that a node needs to track the ratio between the
number of successfully received packets versus packet loss in an efficient way.
A window-based approach consumes too much memory, and counting received
and lost packets does not incorporate that recent events should be weighted
higher. Hence, most of the logical metrics are calculated with an Exponentially
Weighted Moving Average (EWMA) [14]. In contrast to physical metrics, LQEs
based on this method rely on frequent packet transmissions in order to keep the
link-quality estimates up-to-date.

Periodic broadcast packets are often used to achieve this goal and are also
the most commonly brought-up drawback of these approaches, since they waste
energy and occupy the wireless channel. However, the measurements—even of
the physical link-quality estimators—are conducted by the receiver, but the in-
formation must be available at the sender. To perform the necessary exchange of
information for each neighboring node, piggy-backing this data on top of appli-
cation packets is risky due to increased packet size, especially in dense networks.
Moreover, the time of information exchange depends on the network traffic of
each node, so that large delays may occur and nodes make decisions based on
outdated link-quality data. Thus, a periodic information exchange using ded-
icated broadcasts is always necessary when link-quality estimation is needed.
This mitigates animadversion on the periodical broadcasts.

2.2 Link-Quality Estimators for Sensor Networks

Woo et al. define the Window Mean with EWMA (WMEWMA) [14], one of the
first LQEs for estimating the PSR. In a previous work they also investigate and
compare WMEWMA with different existing approaches. Thereafter, EWMA-
based estimators have been widely adopted in WSNs.

ETX introduced by De Couto et al. [6] tries to estimate the number of trans-
missions that are necessary to send a packet successfully. The number of received
packets within a fixed window is counted and compared to the number of ex-
pected packets that are periodically broadcasted by each node. The disadvantage
of ETX is that it is only updated at the end of each window. A short window
thus leads to a high fluctuation of the ETX metric and a long window to an
infrequently updated ETX. Cerpa et al. [4] introduce RNP that incorporates
the distribution of losses within the window. They observed that a link with
consecutive losses should be rated lower than links with discrete losses. Four-
Bit (4B) [7] is based on ETX with several enhancements. They use an EWMA
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for estimating the ETX and a second one for smoothing the final 4B metric.
Additionally, 4B uses additional information from the link and network layer.

The Link Estimation Exchange Protocol (LEEP) is based on 4B and part
of the current TinyOS version [8]. LEEP constitutes a layer between the MAC
protocol and the application or routing engine, respectively. Whenever a packet is
sent, LEEP attaches additional information to that packet: a sequence number,
a counter for the number of known neighbors, and the ID and in-bound link
quality of these neighbors. If the space (left by the upper layer) in the packet
is too small, a round-robin procedure is used. The main disadvantage of LEEP
is that in case of consecutive packet losses the link-quality is not updated. In
addition to the limited number of possible links, due to memory restrictions, this
behavior can result in a full neighborhood table with nodes that no longer exist.

The Adaptive Link Estimator (ALE), introduced by Weyer et al. [13], is
an EWMA filter of the measured PSR. Each node sends a beacon per time
interval (a so-called round) and records received beacons from other nodes within
this interval. At the end of each round, link qualities are recomputed. Upon
reception of a beacon from a previously unknown node the associated link-quality
is initialized with a value of 50% to achieve a shorter rise-time for new links.
The weight of the EWMA is adapted to the quality of the link. For good links
ALE uses a higher weight for more stable estimation, while links with a lower
quality are estimated in an agile fashion for a faster reaction.

An approach using Kalman Filter Based Link-Quality Estimation is proposed
by Senel et al. [11]. They filter the RSSI of successfully received packets with a
Kalman filter and subtract the noise floor to obtain an estimation of the SNR.
Finally, a PSR is derived by applying a hardware specific SNR-PSR mapping for
the transceiver. This approach is very complex and suffers from the restricted
correlation between SNR and PSR [9].

The Fuzzy Link-Quality Estimator (F-LQE) is proposed by Baccour et al. [1].
The idea is to combine four different metrics into a single quality indicator using
Fuzzy Logic. These four metrics are SNR, PSR, link asymmetry level (ASL),
and stability (SF). The SNR is calculated after each successful packet reception
by subtracting the power on the channel directly after packet reception from the
signal strength of the packet. An EWMA filter is used to obtain the PSR. From
the latter, the asymmetry level is obtained by calculating the absolute difference
between the unidirectional PSR values of a node pair. The stability is defined as
the coefficient-of-variation of the most recent 30 PSR values of a link.

3 Holistic Packet Statistics

All of the approaches presented in Sect. 2.2 have in common that they squeeze
link quality into a single value. We argue that there should be a multi-faceted
representation of link quality. Hence, we have devised the concept of Holistic
Packet Statistics (HoPS). HoPS is tailored to provide detailed information about
the static and dynamic behavior of a link using four distinct descriptors of the
link quality. Due to the troublesome nature of the expressiveness of SNR values
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and the corresponding PSR matches—as laid out in Sect. 2.1—we take a dif-
ferent course than recent approaches and focus on the development of a more
sophisticated link-quality assessment using logical metrics.

HoPS allows for utilizing enriched link information by granting access to all
four link-quality metrics rather than hiding information by compressing them
into a single value. Yet, this does not imply that there is no way to combine
the values of HoPS into a single link-quality estimate. In this section, we define
the four quality metrics of HoPS and present two possible solutions for dynamic
link-quality assessment.

3.1 Link-Quality Descriptors

The four link-quality descriptors used by HoPS are measured at the receiver side
by monitoring the packet success rate. Thus, a packet should contain a sequence
number for the detection of packet loss. Additionally, the metrics should be
updated frequently in a constant interval. Many presented LQE implementations
(cf. Sect. 2.2) update only after a packet is successfully received; this leads to a
wrong estimation if no more packets are received from a node.

Short-term Estimation is realized using a first-order EWMA filter for retrieving
the in-bound PSR of a link in the recent past:

hSTτ = α ·hSTτ−1 + (1− α) · qτ . (1)

The choice of the coefficient α influences the sensitivity to short-term changes in
link quality. In the straight-forward case, qτ is a binary value indicating whether
an expected packet at time τ was received. Another option would be using a
windowed mean, if more than one packet is received from the same node within
an update interval. This technique is comparable to WMEWMA.

Long-term Estimation is obtained by a second-order EWMA filter, i.e., the val-
ues of the first-order estimation in (1) are smoothed by

hLTτ = β ·hLTτ−1 + (1− β) ·hSTτ . (2)

To achieve a strong smoothing effect, choosing β larger than α is advisable.
The dynamics of a link are obtained by means of the lower and upper devi-

ation of the short-term estimation from the long-term estimation. The sum of
lower and upper deviation yields the average absolute deviation. Due to space
constraints the detailed derivation is omitted. To track the time-variant changes
of these deviations and to preserve memory, another EWMA filter is applied:

δ+τ = γ · δ+τ−1 + (1− γ) ·ϕ
(
hSTτ , hLTτ

)
, (3)

δ−τ = γ · δ−τ−1 + (1− γ) ·ϕ
(
hLTτ , hSTτ

)
, (4)

with ϕ(x, y) =

{
x− y, if x > y

0 else
. (5)

These two values are utilized as follows.
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Absolute Deviation Estimation is the estimated average absolute deviation

hστ = δ+τ + δ−τ . (6)

This value gives an impression of the stability of the link in terms of the variation
of hSTτ around its mean hLTτ . Its calculation demands less computing power than
the recursively determined standard deviation, while not being less expressive.

Trend Estimation is intended to reflect the course that a link is taking:

hθτ = δ+τ − δ−τ . (7)

A floating link—i.e., its long-term quality has had no notable changes in the
past and is therefore not likely to change in the future—can be identified by
values of hθ close to zero. In contrast, positive values indicate an improving link,
whereas negative values expose a deteriorating link. The absolute value of the
trend indicates the slope of the current trend.

3.2 Theory in Praxis

At this point, we give a brief introduction to the interpretation and usage of
the four link-quality metrics of HoPS. There are many possible solutions for the
utilization of the four link-quality indicators of HoPS. For instance, a routing
protocol could favor a less varying link over one with the same long-term quality.
Another possibility would be to use the variation and trend in order to compute
a lower bound link-quality with a given confidence. Hence, there is no silver
bullet for an enriched employment of these values. However, we want to present
two examples of merging the four HoPS ingredients into a prediction value.

The first approach is a dynamically adjusted link-quality estimator:

Hdyn
τ = hLTτ +

∣∣hθτ ∣∣
hστ
·
(
hSTτ − hLTτ

) (
0 ≤

∣∣hθτ ∣∣
hστ
≤ 1

)
(8)

This estimator describes a floating link (hθ ≈ 0) by its long-term behavior and
a massively changing link (

∣∣hθ∣∣ ≈ hσ) by its short-term estimate. Intermediate
assessment is achieved using the relative behavior of trend and variation.

Approach number two is a confident long-term predictor:

Hpred
τ =


hLT + hθ − ω ·hσ, if hθ ≥ ω ·hσ (0 ≤ ω < 1)

hLT + hθ + ω ·hσ, if hθ ≤ −ω ·hσ
hLT else

(9)

In contrast to the previous method, a link is classified by the difference between
trend and variation. If a clear trend can be identified—i.e., a relative thresh-
old ω is exceeded—the long-term value is shifted correspondingly. The goal is to
improve the prediction of the link behavior by incorporating the trend.
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4 Evaluation Methodology

To evaluate and compare HoPS with the LQEs introduced in Sect. 2.2, we con-
ducted simulations based on a 13-day real-world experiment. The purpose of this
experiment is to gather real-world data in terms of the PSR and channel infor-
mation, which is used by the TinyOS Simulator (TOSSIM) to feed the different
LQEs. The main benefits of this approach are (i) detailed information about
node connectivity in a real-world scenario, (ii) an identical runtime situation for
all experiments, and (iii) repeatable experiments under real-world conditions.

4.1 Data Basis

A sensor-node testbed, consisting of 15 IRIS nodes with distances between 1 m
and 40 m, was employed in our University building. All nodes were USB-powered.
Every node broadcasted beacon messages within a fixed interval of 4 s with a
random jitter using a uniform distribution. The transmit power was 0 dBm on
radio channel 22. Packets consisted of a virtual payload of 13 bytes—containing
a beacon sequence number—and a 13 byte MAC header. Clear Channel Assess-
ment (CCA) was performed with at most 5 retries. We have not deactivated this
feature, as we are interested in realistic connectivity behavior of a sensor net-
work; moreover, a failed CCA implies that the sender experiences a high radio
signal, but it does not necessarily imply the inability of the receiver to correctly
receive a packet. Upon reception of a beacon, the following data is logged on
the connected computer: node ID of sender and receiver, the sequence number,
LQI, and SNR. From this data, a detailed track of packet receptions and cor-
responding physical channel quality was produced. More than 280 000 packets
were transmitted per node.

4.2 Methodology and Metrics

We adjusted the physical layer of TOSSIM to reproduce our office environment.
This layer utilizes the data basis to decide if a packet sent at a given time is
received by other nodes in the network. When a node puts a radio packet onto the
channel, this physical layer checks for all other nodes in the network, if they have
received the experiment beacon in that time slot. The packet is only delivered
to the nodes, for which this is the case. The result is a realistic, repeatable, and
fair simulation environment.

We obtained the PSR ground truth by applying Hamming windows of lengths
from 30 s to 60 min. The different LQEs are compared in terms of their ability to
correctly represent the current and future course of each link. For this compari-
son, we used a normed cross correlation function (CCF) and the mean absolute
error (MAE). Quality values are in the range of 0 to 100% with an 8-bit reso-
lution; EETX values are converted to PSR. In case of F-LQE, the raw value is
used. The implementations of LEEP and RNP have a resolution of tenth. ALE
and HoPS run with 16-bit integers. To achieve fair conditions, we also ran an
adapted version of LEEP using double precision.
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4.3 Parameters

The parameters of the LQEs have been chosen as proposed in the corresponding
papers. LEEP and RNP use an EWMA coefficient of 0.9 and update the esti-
mations every 3 packets. F-LQE uses the fuzzy membership functions from [1]
and a fuzzy parameter of 0.6. ALE uses filter coefficients of 0.9 in agile and
0.987 in stable link state, where PSR estimates of 86% and 74% serve as the
thresholds to switch states. The parameters for HoPS are α = 0.9 for short-term
and β = γ = 0.997 for long-term and deviation estimation. HoPS initializes
hST = hLT = 50% for new links. The threshold for the stable long-term predic-
tion is ω = 0.25. These parameters have been determined using a Java GUI that
was developed for detailed link assessment and link-quality filter design.

5 Evaluation Results

In this section, the most important evaluation results are presented. First, the
ability of different LQEs of link-quality tracking is analyzed and compared using
the testbed data introduced in Sect. 4.1. Second, their performance in terms of
correct link selection is evaluated.

5.1 Link-Quality Tracking

The estimation methods of the different LQEs vary largely, so that light has
to be shed on their ability of link-quality tracking. In case of good links with
a stable PSR above 95% and a SNR well above 5 dB, all LQEs achieve good
estimates. If, in contrast, links have a dynamic behavior, this picture changes.

Medium Link A medium link with a long-term PSR above 75%, notable short-
term deviations, and SNR values below 5 dB is shown in Fig. 2. The second plot
reveals that ALE tracks the long-term quality very well, but immediately toggles
to the agile state, when its estimation falls below the 74% PSR threshold, and
returns to the stable state after reaching the 86% PSR threshold. In the worst
case, this may lead to oscillation between these states. F-LQE assigns a rather
low value to the link, which is mainly caused by the low SNR values: the quality
value is only about half the value of the long-term PSR. Instead of following
the application-relevant PSR value, F-LQE mirrors the course of the SNR. This
leads to the strong lag regarding the recovery phase towards the end of the
displayed time window, where the short-term PSR is approaching the long-term
measure even before the SNR value is increasing again. LEEP and RNP natively
describe link-quality as EETX values with a resolution of tenth, so that their
quality curve degenerates to a step function. RNP tracks variations of the link
quality very quickly, but produces many overshoots. In contrast to this, LEEP
offers a strong low-pass characteristic, but produces peak values. They occur
on some rapid short-term PSR improvements. This behavior is alleviated, if the
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Fig. 2. LQE performance for a medium link with moderate to low SNR

resolution of LEEP is increased (LEEP dbl), so that LEEP can track link quality
more smoothly.

The short- and long-term estimations of HoPS follow the corresponding
ground-truth trace accurately, giving a differentiated picture of the link’s course.
In addition, the variation value produced by HoPS resembles the absolute aver-
age deviation of the two estimates in the recent past. The latter corresponds to
the variation of the ground truth in the top plot. Up to the middle of the time
window, the HoPS trend correctly identifies the link to be floating. With a small
time delay, the decreasing short-term link-quality is identified. Due to the rather
small and slow change, trend and variation stay below an absolute value of 10%.
After the short disturbance of the link, the trend approaches zero and the varia-
tion is decreasing towards its old value. HoPS Dyn is in a stable long-term state
until the beginning of the disturbance. Due to the increasing absolute value of
the trend at that point, HoPS Dyn takes an intermediate value between short-
and long-term prediction of HoPS. During the link recovery phase, HoPS Dyn
slowly returns to the stable prediction. In contrast, HoPS Pred is only marginally
influenced by the disturbance, since it is too short and small.
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Fig. 3. LQE performance for a deteriorating link with low SNR

Poor Link A study of a deteriorating link reveals additional differences between
the LQEs. The link displayed in Fig. 3 drops from a high, stable quality state
to a completely useless link within less than 5 minutes.

ALE implicitly trusts the link for a few minutes due to the large filter co-
efficient. After falling below the 74% border line, ALE follows the quality drop
quickly, but with a notable time-delay. The better a link has been, the larger
this delay will be. Due to the adapted filter coefficient, the PSR bursts at the
end of the displayed window are tracked closely. Although link tracking appears
to work quite well, there are drawbacks. Firstly, there is no option to choose be-
tween short- and long-term estimation values. Secondly, random effects caused
by the static thresholds for changing the link state may occur. The large peak af-
ter the long link disturbance misses the 86% threshold for changing to the stable
state by less than 20%, which corresponds to the reception of only 2 packets.

F-LQE identifies the degenerating quality at the beginning accurately, since
it coincides with a sudden SNR drop, but stops updating the quality estimate,
because no more packets are received. Only upon the reception of new packets,
the quality estimate is updated—which is happening quaintly when the link
comes up again. Note that F-LQE assigns a larger link-quality value to the link
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Fig. 4. Ability of the different LQEs to track the course of the empirical PSR

in its broken state than to the medium link in the previous example. RNP and
LEEP reveal the same weakness, plus RNP overestimates the link during its
bursty phase at the end. For an application, the broken link would look like a
perfect (RNP) or good (LEEP) link for more than 15 minutes.

In contrast, HoPS keeps track of the declining link-quality for both the short-
and long-term values. Due to the large filter coefficient of HoPS LT, there is a
notable lag. The question on which value to trust is answered by the variation
and trend: They take large values that have about the same absolute value. This
indicates a massive change of the link away from its long-term behavior. Due to
the small slope of HoPS LT, trend and variation keep their large absolute values
until the end of the disturbance. At this point they are decreasing again, since
the link is revitalizing. HoPS Dyn detects the deterioration phase quickly and
switches to the short-term estimate. The previous dip in link-quality is ignored
due to the almost zero trend at this point. During the bursty phase at the end,
HoPS Dyn sticks to the short-term estimate, thus reflecting the uncertain future
of the link. Note that this behavior can be adjusted by the choice of the deviation
filter coefficient γ. HoPS Pred reacts slowly to the broken state of the link, but
has a similar course as the long-term ground truth in the first plot. However, it
does not react to the improving link-quality in a suitable way.

Statistical Analysis While these examples give a detailed understanding of
the strengths and weaknesses of the LQEs, a statistical evaluation of all links is
shown in Fig. 4. The box-and-whisker plots summarize the ability of link-quality
tracking using the CCF-norm and the MAE (in absolute percent error) for all
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links in the testbed, on which at least one packet was received. For short-term
estimation ALE, HoPS ST and HoPS Dyn give the best results, see Fig. 4a and
4c. Here, HoPS ST gives the best results, because it always is in an agile mode,
whereas ALE can only follow poor links quickly. Both RNP and F-LQE exhibit
large variations in their ability to track link-quality. We are aware that F-LQE
does not actually try to estimate the PSR, but from an application point of
view, the PSR (or ETX) is the relevant link-quality metric. Because F-LQE has
a very low correlation values, it cannot even track the relative behavior of the
PSR, so that it is doubtful whether its values are useful for applications at all. A
detailed view into the course of a few links reveals why LEEP is performing with
a relatively low MAE: Many links have a quality-value close to 100% for long
times. For these links, LEEP predicts a value of 0 EETX, yielding a 100% PSR
and thus a low error. This partially cancels the heavy estimation errors when
LEEP is not updating its quality metric. In contrast, pure EWMA approaches
suffer from optimal links, since they are slow in taking extreme values.

Long-term link-quality estimation, see Fig. 4b and 4d, is handled well by
the same candidates as before. ALE and all HoPS estimators except HoPS ST
give very low MAE values with a median of about 1%. 75% of the links are
predicted correctly with an error less than 2%. This is a lower value than the
best quarter of LEEP estimates. It comes as a little surprise that LEEP shows
a comparable performance for both short- and long-term ground truth traces. It
therefore turns out, that for long-term link-quality assessment a strong low-pass
behavior is beneficial, because many links had only short disturbances. However,
this picture may slightly change for a different testbed.

The outliers in the CCF-plots are caused by very weak links with short bursts
of medium or high PSR values. We did not filter these links out manually, as
they are realistic phenomena and a clear criterion for removement could not be
found. It shows that HoPS performs a little better in the presence of these links.

5.2 Link Selection

In many application scenarios, nodes have to select links from a set of avail-
able candidates. This could be the case for selecting the next hop in a routing
protocol or for deciding whether to keep or replace a possible neighbor in a size-
limited neighborhood table. The latter example is of particular importance in
dense networks, in which nodes can only track a small subset of all available
communication partners due to memory restrictions and the lack of dynamic
memory allocation in most sensor node operating systems.

Figure 5 shows the link-selection decisions of the LQEs for all available links
and after each 4 s time interval for thresholds of 85% and 95% link-quality,
respectively. If the current quality estimate of a link is equal to or above the
threshold, that link is selected (solid areas), otherwise it is rejected (hashed
areas). The decisions of the LQEs are compared to the real course of the link for
1 min and 60 min windows. Correct decisions are the solid areas at the bottom
(correct selections) and the hashed areas at the top (correct rejections) of each
bar. False rejections are represented by the lower hashed areas and false selections
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Fig. 5. Relative number of correct (solid) and wrong (hashed) link classifications (se-
lections: bottom, rejections: top)

are indicated by the upper solid ones. The classification of the windows can also
be read from the figures—e.g., Fig. 5(a) reveals that a fraction of 0.74 and 0.61,
respectively, were above the two thresholds for the short-term window.

For the 1 min window in Fig. 5(a), HoPS ST achieves the smallest number
of false decisions while HoPS LT generates the most errors due to its heavy
smoothing. The other candidates produce comparable results for the 85% deci-
sion threshold. For the 95% one, LEEP makes a large number of false selections,
because its resolution in this area is too low. Using a finer (LEEP dbl) resolution,
this number is decreased at the cost of an increased amount of false rejections. In
terms of cluster formation and long-term routing decisions, false selections may
pose a severe hazard on throughput and network stability, whereas false rejec-
tions lead to a negative impact only in sparse networks with very few links. Here,
network connectivity can be prevented, if there are too many false rejections.
HoPS ST and Dyn achieve better selection results for the 95% decision threshold
than ALE, where HoPS Dyn produces more false selections than HoPS ST.

The 60 min window in Fig. 5(b) flips the coin in favor of the long-term HoPS
solutions HoPS LT and HoPS Pred. For the decision threshold of 85% they leave
out some good links, but produce way less false selections than LEEP and ALE,
which have the same performance in this setting. The 95% threshold gives an
even more differentiated picture. HoPS Pred and HoPS LT make few wrong
selections and rejections. HoPS Dyn produces comparable results; while falsely
selecting almost as many links as ALE, the number of false rejections is only half
as large. HoPS ST is too agile to produce good results. Increasing the resolution
of LEEP decreases the number of false selections insufficiently.

To investigate the decisions of the LQEs in more detail, Fig. 6 portrays the
relative distribution of selected (solid bars) and rejected (hashed bars) links
for the long-term ground truth with 95% decision threshold. The solid curve
indicates the Cumulative Distribution Function (CDF) for selected links, i.e., the
fraction of selected links with an actual PSR on the X-coordinate. Similarly, the
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Fig. 6. Distribution of 60 min link PSRs for selected (solid) and rejected (hashed) links
based on a decision threshold of 95% PSR (good links)

dash-dotted curve indicates the inverse CDF for rejected links, i.e., the fraction
of rejected links with an actual PSR greater than the value on the X-coordinate.
The crossing points at the 95% vertical borderline resemble the decision accuracy.

10% of the links selected by LEEP have an actual PSR less than 95%, while
almost no links with a PSR of at least 97% have been rejected. The opposite case
is true for ALE. More than 10% of the rejected links are actually better than 95%.
At the same time, link selection works well: Less than 4% of the falsely selected
links turn out to have a PSR below 94%. The selection CDF for HoPS Dyn and
HoPS Pred follows almost the same course as the one of ALE, but the rejection
CDF is lower—approximately 7% for HoPS Pred and 5% for HoPS Dyn. The two
HoPS derivatives therefore exhibit a better rejection behavior of links below the
decision threshold by incorporating the trend and variation. The main difference
between HoPS Dyn and HoPS Pred is that the latter has identified the links in
the region between 96% and 97% more accurately.

6 Conclusion

In this paper, we have presented a novel approach on link-quality estimation
in wireless sensor networks: the Holistic Packet Statistics (HoPS). This new
LQE calculates four distinct quality metrics, describing the short- and long-
term quality of a link at the same time, while also providing information about
the dynamics of a link by means of the variation and trend of the link-quality. All
of these metrics can be accessed by the application. These metrics are calculated
efficiently using EWMA filters and hence have a small memory footprint not
exceeding that of well-known competitors, such as F-LQE or LEEP.

HoPS has been compared to a bouquet of existing LQEs by using PSR data
gathered in an indoor testbed. Due to its four metrics, HoPS tracks the progress
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of a link accurately, being therefore able to inform an application about the
course of short- and long-term link-quality. An adaptive link-quality estimate
can be provided by taking the variation and trend into consideration. This is
supported by a comparative study of PSR traces of various links. An additional
analysis of the correlation and average absolute error of real PSR values proves
the gain of HoPS over existing LQEs. Moreover, it has been shown that HoPS
improves link selection for routing decisions or neighborhood formation.

However, open issues and future work have been identified. Firstly, useful
link-quality prediction is only possible, if link behavior is studied in more detail—
e.g., sensing that a good link is currently deteriorating is more useful, if it is
known in how many cases a link recovers quickly versus the times it breaks down
completely. Secondly, the potential of HoPS can only be fully exploited, if its
metrics are actually used by the application. Merging the four values into a sin-
gle prediction value brings low improvements only. Therefore, advanced routing
and neighborhood management protocols have to be devised. We plan to make
further investigations on this ground, hoping to push link-quality assessment in
wireless sensor networks a step forward.
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